• 제목/요약/키워드: Material Constants

검색결과 569건 처리시간 0.022초

재결정 및 결정립 성장이론에 기초한 Alloy 718의 조직예측 모델에 대한 재료상수 결정방법 (Determination of Material Parameters for Microstructure Prediction Model of Alloy 718 Based on Recystallization and Grain Growth Theories)

  • 염종택;홍재근;김정한;박노광
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.491-497
    • /
    • 2011
  • This work describes a method for determining material parameters included in recrystallization and grain growth models of metallic materials. The focus is on the recrystallization and grain growth models of Ni-Fe based superalloy, Alloy 718. High temperature compression test data at different strain, strain rate and temperature conditions were chosen to determine the material parameters of the model. The critical strain and dynamically recrystallized grain size and fraction at various process conditions were generated from the microstructural analysis and strain-stress relationships of the compression tests. Also, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the average grain size data obtained from other compression tests of the Alloy 718 specimens with the initial grain size of $59.5{\mu}m$.

Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon

  • Andriantsiferana, Caroline;Mohamed, Elham Farouk;Delmas, Henri
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.181-189
    • /
    • 2015
  • A composite material was tested to eliminate phenol in aqueous solution combining adsorption on activated carbon and photocatalysis with $TiO_2$ in two different ways. A first implementation involved a sequential process with a loop reactor. The aim was to reuse this material as adsorbent several times with in situ photocatalytic regeneration. This process alternated a step of adsorption in the dark and a step of photocatalytic oxidation under UV irradiation with or without $H_2O_2$. Without $H_2O_2$, the composite material was poorly regenerated due to the accumulation of phenol and intermediates in the solution and on $TiO_2$ particles. In presence of $H_2O_2$, the regeneration of the composite material was clearly enhanced. After five consecutive adsorption runs, the amount of eliminated phenol was twice the maximum adsorption capacity. The phenol degradation could be described by a pseudo first-order kinetic model where constants were much higher with $H_2O_2$ (about tenfold) due to additional ${\bullet}OH$ radicals. The second implementation was in a continuous process as with a fixed bed reactor where adsorption and photocatalysis occurred simultaneously. The results were promising as a steady state was reached indicating stabilized behavior for both adsorption and photocatalysis.

Springback FE modeling of titanium alloy tubes bending using various hardening models

  • Shahabi, Mehdi;Nayebi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.369-383
    • /
    • 2015
  • In this study, effect of various material hardening models based on Holloman's isotropic, Ziegler's linear kinematic, non-linear kinematic and mixture of the isotropic and nonlinear kinematic hardening laws on springback prediction of titanium alloy (Ti-3Al-2.5V) in a tube rotary draw bending (RDB) process was investigated with presenting the keynotes for a comprehensive step by step ABAQUS simulation. Influence of mandrel on quality of the final product including springback, wall-thinning and cross-section deformation of the tube was investigated, too. Material parameters of the hardening models were obtained based on information of a uniaxial test. In particular, in the case of combined iso-nonlinear kinematic hardening the material constants were calibrated by a simple approach based on half-cycle data instead of several stabilized cycles ones. Moreover, effect of some material and geometrical parameters on springback was carried out. The results showed that using the various hardening laws separately cannot describe the material hardening behavior correctly. Therefore, it is concluded that combining the hardening laws is a good idea to have accurate springback prediction. Totally the results are useful for predicting and controlling springback and cross-section deformation in metal forming processes.

원자로 용접부의 국부적 미세조직 변화에 따른 동적탄성계수 측정 (Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation)

  • 정용무;김주학;홍준화;정현규
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.390-396
    • /
    • 2000
  • 원자로 재료인 SA 508 Class 3 강용접부 및 열영향부 모사 시험편에 대해서 초음파공명분광법으로 동적탄성계수를 측정하였다. 등방성 탄성계수를 가정하여 초기 추정 탄성 계수, $c_{11},\;c_{12}$$c_{44}$로부터 장방형 시편의 공명 주파수를 계산하였으며 계산된 주파수와 초음파공명분광법으로 측정된 주파수를 비교, 반복 수렴 절차를 거쳐 정밀한 탄성계수를 구했다. 열처리 조건의 차이 및 미세 조직의 차이에 따라 영률 및 전단 계수의 차이가 확실하게 나타났다. 미세한 베이나이트 조직에서의 영률 및 전단 계수는 조대한 마르텐사이트 조직보다 높았으며 이러한 경향은 미세 경도 시험 등의 다른 실험 결과와도 일치하였다.

  • PDF

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.449-462
    • /
    • 2020
  • This work aims to study effects of the crack and the surface energy on the free longitudinal vibration of axially functionally graded nanorods. The surface energy parameters considered are the surface stress, the surface density, and the surface Lamé constants. The cracked nanorod is modelled by dividing it into two parts connected by a linear spring in which its stiffness is related to the crack severity. The surface and bulk material properties are considered to vary in the length direction according to the power law distribution. Hamilton's principle is implemented to derive the governing equation of motion and boundary conditions. Considering the surface stress causes that the derived governing equation of motion becomes non-homogeneous while this was not the case in works that only the surface density and the surface Lamé constants were considered. To extract the frequencies of nanorod, firstly the non-homogeneous governing equation is converted to a homogeneous one using an appropriate change of variable, and then for clamped-clamped and clamped-free boundary conditions the governing equation is solved using the harmonic differential quadrature method. Since the present work considers effects of all the surface energy parameters, it can be claimed that this is a comprehensive work in this regard.

한반도 중부권 지각물질의 구조와 물성 연구(5) : Free impedance와 Step force법을 이용한 수진기의 특성측정 (Structure and Physical Properties of Earth Crust Material in the Middle of Korean Peninsula(5) : Characteristic Measurement of Geophone using Free Impedance and Step Force Method)

  • 유영준;송무영
    • 지질공학
    • /
    • 제4권2호
    • /
    • pp.207-218
    • /
    • 1994
  • 가동 코일형으로 수진기의 고유정수를 free impedance와 step force법에 의해 결정할 수 있다. 전자의 방법으로는 수진기의 고유주파수($f_o$)와 감쇠정수($h_o$)와 motinal impedance로 부터 관성질량(m) 등을, 후자의 방법으로는 감도(G)를 결정하는 것이 바람직하다. 특히 후자의 방법에 의한 측정에서 측정 시스템을 자체의 고유한 장적기에 의한 잠음발생 문제를 보정해야 한다. 이들의 수진기 고유정수로부터 주파수 특성분석, 즉 위상특성과 진폭특성을 분석한 결과, 고유주파수를 경계로하여 수진기가 가속도계와 변위계로 작용함을 알 수 있다.

  • PDF

C/SiC 재료의 물성 측정을 위한 준 해석적 방법 (Quasi-Analytical Method of C/SiC Material Properties Characterization)

  • 김영국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.437-440
    • /
    • 2010
  • 이 논문은 발사체 노즐에 사용되는 내열성 재료인 C/SiC에 대한 이방성 물성을 예측하는 방법으로, 평면 방향의 실험 데이터를 이용해서 9개의 엔지니어링 물성을 간단하고 효과적으로 계산하는 준 이론적 접근에 대해 설명하였다. 이 방법은 C/SiC 복합재료를 직조 보강재의 굴곡율에 따라 세 층으로 이상화 하여, 고전 적층 평판이론으로 계산한다. 평면 방향으로 실행된 실험 데이터와 직조 구조물의 굴곡율을 초기 데이터로 이용하며, 측정이 어려운 두께 방향의 물성을 효과적으로 얻을 수 있었다. 예제를 통하여 이 방법의 유용성을 증명하였다.

  • PDF

나노 힘 측정 및 표준 (Nano Force Metrology and Standards)

  • 김민석;박연규;최재혁;김종호;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

피로 균열 전파 거동에 대한 실험식 (An Experimental Equation on the Fatigue Crack Growth Rate Behavior)

  • 김상철;강동명;우창기
    • 한국정밀공학회지
    • /
    • 제8권2호
    • /
    • pp.27-35
    • /
    • 1991
  • We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.

  • PDF