References
- Lagunas-Allue L, Martinez-Soria MT, Sanz-Asensio J, Salvador A, Ferronato C, Chovelon JM. Photocatalytic degradation of boscalid in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. Appl. Catal. B 2010;98:122-131. https://doi.org/10.1016/j.apcatb.2010.05.020
-
Elmolla ES, Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/
$TiO_2$ and UV/$H_2O_2$ /$TiO_2$ photocatalysis. Desalination 2010;252:46-52. https://doi.org/10.1016/j.desal.2009.11.003 -
HHH Lin, AYC Lin. Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/
$TiO_2$ in an aqueous environment. Water Res. 2014;48:559-568. https://doi.org/10.1016/j.watres.2013.10.011 -
Konstantinou IK, Albanis TA.
$TiO_2$ -assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. A review. Appl. Catal. B 2004;49:1-14. https://doi.org/10.1016/j.apcatb.2003.11.010 - Rizzo L. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res. 2011;45:4311-4340. https://doi.org/10.1016/j.watres.2011.05.035
- Benoit-Marquie F, Puech-Costes E, Braun A, Oliveros E, Maurette MT. Photocatalytic degradation of 2,4-dihydroxybenzoic acid in water : efficiency optimization and mechanistic investigation. J. Photochem. Photobiol. A chem. 1997;108: 65-71. https://doi.org/10.1016/S1010-6030(96)04501-7
-
Arana J, Melian JAH, Rodriguez JMD, et al.
$TiO_2$ -photocatalysis as a tertiary treatment of naturally treated wastewater. Catal. Today 2002;76:279-289. https://doi.org/10.1016/S0920-5861(02)00226-2 - Areerachakul N, Vigneswaran S, Ngo HH, Kandasamy J. Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water. Sep. Purif. Technol. 2007;55:206-211. https://doi.org/10.1016/j.seppur.2006.12.007
-
Zhang L, Kanki T, Sano N, Toyoda A. Development of
$TiO_2$ photocatalyst reaction for water purification. Sep. Purif. Technol. 2003;31:105-110. https://doi.org/10.1016/S1383-5866(02)00157-0 - Shon HK, Vigneswaran S, Ngo HH, Kim JH. Chemical coupling of photocatalysis with flocculation and adsorption in the removal of organic matter. Water Res. 2005;39:2549-2558. https://doi.org/10.1016/j.watres.2005.04.066
-
Lee DK, Kim SC, Cho IC, Kim SJ, Kim SW. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having
$TiO_2$ -coated activated carbon. Sep. Purif. Technol. 2004;34: 59-66. https://doi.org/10.1016/S1383-5866(03)00175-8 - Toyoda M, Nanbu Y, Kito T, Hiranob M, Inagaki M. Preparation and performance of anatase-loaded porous carbons for water purification. Desalination 2003;159:273-282. https://doi.org/10.1016/S0011-9164(03)90079-8
-
Tao Y, Schwartz S, Wu CY, Mazyck DW. Development of a
$TiO_2$ /AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams. Ind. Eng. Chem. Res. 2005;44:7366-7372. https://doi.org/10.1021/ie048749w -
Kim KD, Dey NK, Seo HO, Kim YD, Lim DC, Lee M. Photocatalytic decomposition of toluene by nano-diamond supported
$TiO_2$ prepared using atomic layer deposition. Appl. Catal. A: Gen. 2011;408:148-155. https://doi.org/10.1016/j.apcata.2011.09.019 -
Sun J, Wang X, Sun J, Sun R, Sun S, Qiao L. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/
$TiO_2$ /AC photocatalyst. J. Mol. Catal. A Chem. 2006; 260:241-246. https://doi.org/10.1016/j.molcata.2006.07.033 - El-Sheikh AH, Newman AP, Al-Daffaee H, Phull S, Cresswell N, York S. Deposition of anatase on the surface of activated carbon. Surf. Coat. Technol. 2004;187:284-292. https://doi.org/10.1016/j.surfcoat.2004.03.012
-
Andriantsiferana C, Mohamed EF, Delmas H. Photocatalytic degradation of an azo-dye on
$TiO_2$ /activated carbon composite material. Environ. Technol. 2014;35:355-363. https://doi.org/10.1080/09593330.2013.828094 -
Mills A, Elliott N, Parkin IP, O'Neill SA, Clark RJ. Novel
$TiO_2$ CVD films for semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 2002;151:171-179. https://doi.org/10.1016/S1010-6030(02)00190-9 -
Zhang X, Zhou M, Lei L. Preparation of photocatalytic
$TiO_2$ coatings of nanosized particles on activated carbon by APMOCVD. Carbon 2005;43:1700-1708. https://doi.org/10.1016/j.carbon.2005.02.013 -
Teng F, Zhang G, Wang Y, et al. The role of carbon in the photocatalytic reaction of carbon/
$TiO_2$ photocatalysts. Appl. Surf. Sci. 2014;320:703-709. https://doi.org/10.1016/j.apsusc.2014.09.153 -
Horikoshi S, Sakamoto S, Serpone N. Formation and efficacy of
$TiO_2$ /AC composites prepared under microwave irradiation in the photoinduced transformation of the 2-propanol VOC pollutant in air. Appl. Catal. B 2013;140-141:646-651. https://doi.org/10.1016/j.apcatb.2013.04.060 - Tanguay JF, Suib SL, Coughlin RW. Dichloromethane photodegradation using titanium catalysts. J. Catal. 1989;117: 335-347. https://doi.org/10.1016/0021-9517(89)90344-8
-
Fernandez A, Lassaletta G, Jimenez VM, et al. Preparation and characterization of
$TiO_2$ photocatalysts supported on various rigid supports (glass, quartz and stainless steel), Comparative studies of photocatalytic activity in water purification. Appl. Catal. B 1995;7:49-63. https://doi.org/10.1016/0926-3373(95)00026-7 - Zazueta ALL, Destaillats H, Puma GL. Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method. Chem. Eng. J. 2013;217:475-485. https://doi.org/10.1016/j.cej.2012.11.085
- Matos J, Laine J, Hermann JM. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J. Catal. 2001;200:10-20. https://doi.org/10.1006/jcat.2001.3191
-
Goei R, Lim TT. Asymmetric
$TiO_2$ hybrid photocatalytic ceramic membrane with porosity gradient: Effect of structure directing agent on the resulting membranes architecture and performances. Ceram. Int. 2014;40:6747-6757. https://doi.org/10.1016/j.ceramint.2013.11.137 -
Tryba B, Morawski AW, Inagaki M. Application of
$TiO_2$ - mounted activated carbon to the removal of phenol from water. Appl. Catal. B 2003;41:427-433. https://doi.org/10.1016/S0926-3373(02)00173-X -
Tsumura T, Kojitani N, Umemura H, Toyoda M, Inagaki M. Composites between photoactive anatase-type
$TiO_2$ and adsorptive carbon. Appl. Surf. Sci. 2002;196:429-436. https://doi.org/10.1016/S0169-4332(02)00081-8 - Herrmann JM. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999;53:115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
- Matos J, Laine J, Hermann JM, Uzcategui D, Brito JL. Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl. Catal. B 2007;70:461-469. https://doi.org/10.1016/j.apcatb.2005.10.040
- Garcia-Munoz P, Carbajo J, Faraldos M, Bahamonde A. Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst. J. Photochem. Photobiol. A Chem. 2014;287:8-18. https://doi.org/10.1016/j.jphotochem.2014.05.002
-
Ao CH, Lee SC. Enhancement effect of
$TiO_2$ immobilized on activated carbon fiber for the photodegradation of pollutants at typical indoor air level. Appl. Catal. B 2003;44:191-205. https://doi.org/10.1016/S0926-3373(03)00054-7 - Chiang YC, Chiang PC, Huang CP. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 2001;39:523-534. https://doi.org/10.1016/S0008-6223(00)00161-5
- Wang JP, Chen YZ, Feng HM, Zhang SJ, Yu HQ. Removal of 2,4 - dichlorophenol from aqueous solution by static-air-activated carbon fibers. J. Colloid Interface Sci. 2007;313: 80-85. https://doi.org/10.1016/j.jcis.2007.04.012
- Augugliaro V, Palmisano L, Schiavello M, Sclafani A. Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion. Appl. Catal. 1991;69:323-340. https://doi.org/10.1016/S0166-9834(00)83310-2
- Gupta H, Tanaka S. Photocatalytic mineralisation of perchlororthylene using titanium dioxide. Water Sci. Technol. 1995;31:47-54.
- Herrmann JM, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technology for water treatment. Catal. Today 1993;17:7-20. https://doi.org/10.1016/0920-5861(93)80003-J
-
Chu W. Modeling the quantum yields of herbicide 2,4-D decay in UV/
$H_2O_2$ process. Chemosphere 2001;44:935-941. https://doi.org/10.1016/S0045-6535(00)00556-7 - Dionysiou DD, Suidan MT, Baudin I, Laine JM. Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuous-mode photocatalytic reactor. Appl. Catal. B 2004;50:259-269. https://doi.org/10.1016/j.apcatb.2004.01.022
-
Chen S, Liu Y. Study on the photocatalytic degradation of glyphosate by
$TiO_2$ photocatalyst. Chemosphere 2007;67: 1010-1017. https://doi.org/10.1016/j.chemosphere.2006.10.054 -
Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinosa D. Factors affecting diclofenac decomposition in water by UV-A/
$TiO_2$ photocatalysis. Chem. Eng. J. 2010;161:53-59. https://doi.org/10.1016/j.cej.2010.04.020 -
Ilisz I, Laszlo Z, Dombi A. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous
$TiO_2$ suspension. I: Effect of charge-trapping species on the degradation kinetic. Appl. Catal. A 1999;180:25-33. https://doi.org/10.1016/S0926-860X(98)00355-X -
Adan C, Carbajo J, Bahamonde A, Martinez-Arias A. Phenol photodegradation with oxygen and hydrogen peroxide over
$TiO_2$ and Fe-doped$TiO_2$ . Catal. Today 2009;143:247-252. https://doi.org/10.1016/j.cattod.2008.10.003 - Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60:309-319. https://doi.org/10.1021/ja01269a023
- Horvath G, Kawazoe KJ. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan 1983;16:470-475. https://doi.org/10.1252/jcej.16.470
- Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. J. Am. Chem. Soc. 1951;73:373-380. https://doi.org/10.1021/ja01145a126
- Laszlo K, Tombacz E, Novak C. pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloids Surf. A Physicochem. Eng. Asp. 2007;306:95-101. https://doi.org/10.1016/j.colsurfa.2007.03.057
- Kumar A, Kumar S, Kumar S, Gupta DV. Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: Equilibrium and kinetics. J. Hazard. Mater. 2007;147:155-166. https://doi.org/10.1016/j.jhazmat.2006.12.062
- Liu C, Tang Z, Chen Y, Su S, Jiang W. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite. Bioresour. Technol. 2010;101:1097-1101. https://doi.org/10.1016/j.biortech.2009.09.012
- Andriantsiferana C, Julcour-Lebigue C, Creanga-Manole C, Delmas H, Wilhelm AM. Competitive Adsorption of p-Hydroxybenzoic Acid and Phenol on Activated Carbon: Experimental Study and Modeling. J. Environ. Eng. 2013;139: 402-409. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000600
- Mohamed EF, Andriantsiferana C, Wilhelm AM, Delmas H. Competitive adsorption of phenolic compounds from aqueous solution using sludge based activated carbon. Environ. Technol. 2011;32:1325-1336. https://doi.org/10.1080/09593330.2010.536783
-
Cordero T, Duchamp C, Chovelon JM, Ferronato C, Matos J. Influence of L-type activated carbons on photocatalytic activity of
$TiO_2$ in 4-chlorophenol photodegradation. J. Photochem. Photobiol. A Chem. 2007;191:122-131. https://doi.org/10.1016/j.jphotochem.2007.04.012 - Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 2010;261:3-18. https://doi.org/10.1016/j.desal.2010.04.062
-
Grabowska E, Reszczynska J, Zaleska A. Mechanism of phenol photodegradation in the presence of pure and modified-
$TiO_2$ : A review. Water Res. 2012;46:5453-5471. https://doi.org/10.1016/j.watres.2012.07.048 - Zhang X, Li A, Jiang Z, Zhang Q. Adsorption of dyes and phenol from water on resin adsorbents: effect of adsorbate size and pore size distribution. J. Hazard. Mater. 2006;137: 1115-1122. https://doi.org/10.1016/j.jhazmat.2006.03.061
- Santos A, Yustos P, Quintanilla A, Rodriguez S, Garcia-Ochoa F. Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B 2002;39:97-113. https://doi.org/10.1016/S0926-3373(02)00087-5
-
Muruganandham M, Swaminathan M. Photocatalytic decolourisation and degradation of Reactive Orange 4 by
$TiO_2$ -UV process. Dyes Pigm. 2006;68:133-142. https://doi.org/10.1016/j.dyepig.2005.01.004
Cited by
- composite for photocatalytic degradation of aqueous organic pollutants under visible light irradiation pp.02682605, 2017, https://doi.org/10.1002/aoc.4119
- Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity pp.1614-7499, 2017, https://doi.org/10.1007/s11356-017-8571-y
- Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber vol.65, pp.12, 2015, https://doi.org/10.1080/10962247.2015.1100141
- Water Reuse Study from Urban WWTPs via c-Ultrafiltration and Ozonation Technologies: Basis for Resilient Cities and Agriculture vol.11, pp.2, 2015, https://doi.org/10.3390/agronomy11020322
- Hydrothermal synthesis of monocopper sulfide for hydrogen peroxide-assisted photodegradation of paraquat vol.26, pp.1, 2015, https://doi.org/10.4491/eer.2019.484
- Solar photocatalytic degradation of organic pollutants from indoor air using novel direct flame combustion based hollow nanocomposite of Pd/Anatase–Rutile TiO2 mixed phase and evaluat vol.32, pp.7, 2021, https://doi.org/10.1016/j.apt.2021.05.030