• 제목/요약/키워드: Material Constants

검색결과 569건 처리시간 0.027초

마이크로 크랙을 포함한 재료의 매크로 탄성 정수에 관한 자연요소해석 (Natural Element Analysis on Macro Elastic Moduli for Materials with Micro-cracks)

  • 강성수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.716-723
    • /
    • 2006
  • A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the micorcracks. The macro elastic moduli of isotropic solids containing a number of randomly distributed microcracks are calculated considering the effect of microcrack closure to demonstrate the validity of the proposed method.

전파흡수체의 전파흡수특성측정기법에 관한 연구 (A Study on Measuring Technique of Electromagnetic Wave Absorbing Characteristics of Microwave Absorbers)

  • 김동일;안영섭;정세모
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1992년도 정기총회 및 추계학술발표회
    • /
    • pp.2-29
    • /
    • 1992
  • According to the increase of occupation density of microwave frequency band on use microwave environments have been congested extensively. For shielding unnecessary electromagnetic wave of preventing the electromagnetic wave reflection a good conductor a low resistive material or a lossy material is mainly used. As a method to measure the absorbing characteristics of microwave absorber the fundamental microwave measuring method can be used. There is however a big problem in measuring errors since the wavelength of microwave is very short especially as in the case as microwave absorber for RADAR. Therefore this research aimed to a converting adaptor of 20mm${\Phi}$ coaxial tube from a Type-N connector to 20mm${\Phi}$ coaxial tube and to use it for designing microwave absorber and evaluating absorbing characteristics. Furthermore the measurements of absorbing characteristics and material constants have performed and reviewed which were carried out by using the coaxial tube in the short type and by using rectangular waveguide respectively As a result the validity of the measured values have been confirmed.

  • PDF

반용융 알루미늄 재료의 압축성형시 변형율속도가 미시적 거동에 미치는 영향 (The Effect of Strain Rate on Macroscopic Behaviour in Compression Forming of Semi-Solid Aluminum Alloy)

  • 강충길;김기훈
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.338-345
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress stage and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for material behaviour for variation of strain rate. Therefore, to investigate the effect of compression speed on deformation of aluminum alloy with globular microstructure, the compression test for semi-solid aluminum alloy with controlled solid fraction is perform by material test system which is attracted with furance. The behavior of semi-solid aluminum alloy were discussed for the various solid fraction and die speed. The material constants in stress-strain were are also proposed.

  • PDF

하이브리드 방법에 의한 세라믹 성형재료의 탄성계수 결정 (The Determination of Elastic Constant for Ceramic Forming Material by Hybrid Method)

  • 박명균;구본성
    • 대한안전경영과학회지
    • /
    • 제7권1호
    • /
    • pp.211-222
    • /
    • 2005
  • The ceramic forming materials are getting more important recently since they are used widely in repairing metal structures, welded metal structures and mechanical components etc. The determination of elastic constants for ceramic coating materials takes much time and efforts in experiment due to the brittleness of ceramic material itself. The aim of this research is to determine the Young's Modulus for ceramic metal coating material. In order to achieve the goal, the hybrid method which uses impulse hammer technique for experimental method and modal analysis of finite element method for computational method was used. The results show good agreement with existing experimental data on Young's Modulus.

온도 및 주파수 변화에 따른 프린트 배선기판의 유전특성 연구 (A Study on Dielectric Properties of Printed Circuit Board Materials with Variation of Frequency and Temperature)

  • 박종성;김종헌;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.773-777
    • /
    • 1998
  • This paper presents the results of measured permittivity of PCB sheet material in the frequency range of 0.1 ~ 2[㎓] and temperature range of 25~ 85[>$^{\circ}C$]. Microstrip lines with different physical length are implemented to measure the attenuation and phase shift of the signals through these lines. The loss factor of glass-epoxy and teflon could by calculated with the measured dielectric constant and the attenuation. From the experiment, the glass-epoxy was more influenced by temperature and frequency than teflon. The average dielectric constants of glass-epoxy and teflon within the measured frequency range are 4.48 and 2.18, respectively.

  • PDF

Numerical simulation of material damage for structural steels S235JR and S355J2G3

  • Kossakowski, Pawel G.;Wcislik, Wiktor
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.133-146
    • /
    • 2018
  • The paper discusses numerical analysis of tensile notched specimens with the use of Gurson - Tvergaard - Needleman (GTN) material model. The analysis concerned S235JR and S355J2G3 steel grades, subjected to medium stress state triaxiality ratio, amounting 0.739. A complete procedure for FEM model preparation was described, paying special attention to the issue of determining material constants in the GTN model. An example of critical void volume fraction ($f_c$) experimental determination procedure was presented. Finally, the results of numerical analyses were discussed, indicating the differences between steel grades under investigation.

Liquid Crystal Alignment on the Films of Polymethacrylate and Polyurethane Bearing an Aminotroazobenzene Chromophore

  • Park, Dong-Hoon;Kim, Jae-Hyung;Cho, Kang-Jin
    • Macromolecular Research
    • /
    • 제8권4호
    • /
    • pp.172-178
    • /
    • 2000
  • We synthesized polymethacrylate and polyurethane bearing a photosensitive azobenzene chromophore. Photo-induced birefringence of the thin film was observed under a linearly polarized light(λ = 532 nm). Dynamic behaviors of birefringence in two polymers were investigated in terms of the rate constants of growth and decay. An induced dichroism was observed from polarized UV-VIS absorption spectroscopy. Layers of two photosensitive polymers were used for aligning liquid crystal (LC) molecules instead of one of the rubbed polyimide layers in the conventional twisted nematic cell. For producing homogeneous alignment of a nematic LC molecule, a linearly polarized light was exposed to the films of two polymers. The stability of the LC alignment upon the linearly polarized light exposure was also studied.

  • PDF

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.

Fluoride 첨가에 따른 CaWO$_4$의 소결 및 고주파 유전특성 (Effects of Fluoride Additions on Sintering and Microwave Dielectric Properties of CaWO$_4$)

  • 이경호;김용철;방재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2002
  • In this study, development of a new LTCC material using a non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. For LTCC application, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, CaWO$_4$ was tamed out the suitable LTCC material. CaWO$_4$ can be sintered up to 98% of full density at 1200$^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 10.15, 62880GHz, and -27.8ppm/$^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, 0.5∼1.5 wt% LiF were added to CaWO$_4$. LiF addition reduced the sintering temperature/time down to 800$^{\circ}C$/10∼30min due to the reactive liquid phase sintering. Dielectric constant lowered from 10.15 to 9.38 and Q x fo increased up to 92000GHz with increasing LiF content.

  • PDF

취성기지 복합재료의 물성치에 미치는 계면분리의 영향 (Effect of Interfacial Debonding on the Material Properties of Brittle Matrix Composites)

  • 염영진;진민철
    • Composites Research
    • /
    • 제16권1호
    • /
    • pp.42-49
    • /
    • 2003
  • 취성기지 복합재료는 섬유와 기지 사이에 계면분리가 존재하는 경우가 있는데 이것은 복합재료의 강도와 강성저하의 원인이 된다. 계면분리와 섬유체적비가 복합재료의 기계적 물성치에 미치는 영향에 대만 유한요소해석을 수행하였다. 우선 몇 가지 가정하에 복합재료를 구성하는 섬유와 기지에 대하여 간단하게 모델링하고 이웃하는 대표체적요소의 경계를 따라 응력과 변위 연속조건을 부과하였다. 강성상수들을 역변환하여 복합재료의 유효물성치를 구하였다. 완전접착의 경우 수치해를 혼합물법칙에 의한 이론해와 비교한 결과 일치함을 알 수 있었고 계면분리가 큰 경우 섬유체적비가 증가하더라도 물성치가 감소함을 알 수 있었다.