• Title/Summary/Keyword: Material Constants

Search Result 569, Processing Time 0.029 seconds

Ductile Fracture of a Marine Structural Steel based on HC-DSSE Combined Fracture Strain Formulation (HC-DSSE 조합 파단 변형률 정식화에 기반한 선박해양 구조물용 강재의 연성 파단 예측)

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Kim, Younghyn;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.82-93
    • /
    • 2019
  • In this paper, the ductile fracture criteria for a marine structural steel (EH36) are presented and validated. The theoretical background of the recently developed Hosford-Coulomb (HC) fracture strain model and the DSSE fracture strain model which was developed to apply to the shell elements is described. In order to accurately estimate the flow stress in the large strain range up to the fracture, the material constants for the combined Swift-Voce constitutive equation were derived by the numerical analyses of the smooth and notched specimens made from the EH36 steel. As a result of applying the Swift-Voce flow stress to the other notched specimen model, a very accurate load - displacement curve could be derived. The material constants of the HC fracture strain and DSSE fracture strain models were independently calibrated based on the numerical analyses for the smooth and notch specimen tests. The user subroutine (VUMAT of Abaqus) was developed to verify the accuracy of the combined HC-DSSE fracture strain model. An asymmetric notch specimen was used as verification model. It was confirmed that the fracture of the asymmetric specimen can be accurately predicted when a very small solid elements are used together with the HC fracture strain model. On the other hand, the combined HC-DSSE fracture strain model can predict accurately the fracture of shell element model while the shell element size effect becomes less sensitive.

Characterization of PSCF3737 for intermediate temperature solid oxide fuel cell (IT-SOFC) (중.저온형 고체 산화물 연료전지의 공기극으로 사용되는 PSCF3737 물질의 특성에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_{3-\delta}$ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were carried out to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material were increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atoms. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of $Pr_{0.3}Sr_{0.7}CoO_{3-\delta}$(PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between $Gd_{0.1}Ce_{0.9}O_2$ (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to decreased reaction sites by CGO91.

  • PDF

Development of Neural Network Based Nonlinear Finite Element Procedure for Tunnel Structures (터널구조물 해석을 위한 인공신경망 기반 비선형 유한요소해석 기법의 개발)

  • Shin, Hyu-Soung;Bae, Gyu-Jin;Pande, G.N.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.442-449
    • /
    • 2004
  • This paper describes a new concept of finite element analysis, which is based on neural network based material models (NNCMs) without invoking any pre-chosen mathematical framework. NNCMs have several advantages over conventional constitutive models (CCMs) and once plugged in a finite element (FE) engine, can be used for FE analysis in a manner similar to CCMs. The paper demonstrates a FE framework in which NNCMs are incorporated and also proposes a strategy for data enhancement by invoking the assumption of isotropy of the material. It is shown through some illustrative examples that this provides a better training environment for a generalized NNCM in which stress and strain components are used as effects and cause. Form this study, it appears that there is a prima facia case for developing NNCMs for materials for which mathematical theories become too complex and a large number of material parameters and constants have to be identified or determined.

  • PDF

Low Dielectric Constant Polymeric Materials for Microelectronics Applications (마이크로전자 응용에서의 저유전율 고분자 재료)

  • 이호영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.57-67
    • /
    • 2002
  • Increased signal speed can be obtained in three ways: changing the layout and/or the ratio of the width to thickness of the metal lines, decreasing the specific resistance of the interconnect metal, and decreasing the dielectric constant of the insulating material (intermetal dielectric). Further advancement cannot be expected from changing layout or decreasing specific resistance. The only alternative is to use an insulating material with a lower dielectric constant than other ones used presently. A large variety of polymers has been proposed for use as materials with low dielectric constants for applications in microelectronics. In this review, the properties of selected polymers as well as various fabrication methods for polymer thin films are discussed. Based on the properties described so far, and the requirements for applications as intermetal dielectric material, the possibilities for further developments also are discussed.

  • PDF

Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates

  • Dehshahri, Kasra;Nejad, Mohammad Zamani;Ziaee, Sima;Niknejad, Abbas;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.115-134
    • /
    • 2020
  • In this paper, the free vibrations analysis of the nanoplates made of three-directional functionally graded material (TDFGM) with small scale effects is presented. To study the small-scale effects on natural frequency, modified strain gradient theory (MSGT) has been used. Material properties of the nanoplate follow an arbitrary function that changes in three directions along the length, width and thickness of the plate. The equilibrium equations and boundary conditions of nanoplate are obtained using the Hamilton's principle. The generalized differential quadrature method (GDQM) is used to solve the governing equations and different boundary conditions for obtaining the natural frequency of nanoplate made of three-directional functionally graded material. The present model can be transformed into a couple stress plate model or a classic plate model if two or all parameters of the length scales set to zero. Finally, numerical results are presented to study the small-scale effect and heterogeneity constants and the aspect ratio with different boundary conditions on the free vibrations of nanoplates. To the best of the researchers' knowledge, in the literature, there is no study carried out into MSGT for free vibration analysis of FGM nanoplate with arbitrary functions.

Strength Evaluation and Life Prediction of the Multistage Degraded Materials (다단계 모의 열화재의 재료강도 평가와 수명예측)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2271-2279
    • /
    • 1993
  • In the case of life prediction on the structures and machines after long service, it is natural to consider a degradation problems. Most of degradation data form practical structures are isolated data obtained at the time of periodical inspection or repair. From such data, it may be difficult to obtain the degradation curve available and necessary for life prediction. In this paper, for the purpose of obtaining a degradation curves, developed the simulate degradation method and fatigue test and Charpy impact test were conducted on the degraded, simulate degraded and recovered materials. Fatigue life prediction were conducted by using the relationship between fracture transition temperature (DBTT : vTrs) obtained from the Charpy impact test through the degradation process and fatigue crack growth constants of m and C obtained from the fatigue test.

Electric surface field effect on the formation of nanoporous pipe structure in Al anodization process (알루미늄 양극산화 공정에서의 나노다공성 파이프 구조 형성에 대한 표면 전기장 효과)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.427-428
    • /
    • 2009
  • The authors investigated anomalous nanoporous structures of aluminum oxides during the Al anodization process. We implemented two-steps anodizing process for the electrolyte of oxalic acid. As increasing DC voltages, lattice constants are proportionally increased. For the curved surface, the surface electric field was distorted so that the nanoporous pipe channel changed to a cone-type shape. We confirmed the periodicity by using the FFT(Fast Fourier Transform) analysis.

  • PDF

An Identification Method for Complex-Valued Material Properties of Piezoelectric Ceramics Using Nonlinear Optimization Technique (비선형 최적화 기법을 이용한 압전 세라믹의 복소 재료 정수 규명)

  • 조치영;서희선;김대환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.298-305
    • /
    • 1996
  • The common practice for the identification of piezoelectric properties is based on the use of immittance behavior of a resonator with a certain geometry and poling direction. In this paper, a new method is suggested to identify the complex-valued piezoelectric material constants. This method is based on the minimization of differences between the analytical immittance and the experimental measurement of resonator. Non-linear minimization problems are formulated to find out the unknown properties relevant to the resonators. The immittance data used for identification are measured at a number of frequencies which cover the vicinity of resonance frequency and the low frequency region. To illustrate the proposed technique, the complex-valued coefficients are identified for a typical PZT4 ceramic composition.

  • PDF

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

An Assessment of Elastic and Damping Material Properties of PVC/MBS by an Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성 및 감쇠 특성 평가)

  • 박명균;박세만;최영식;박상규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.766-772
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic and damping properties of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests In this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease while the damping capacity improve when MBS rubber was added in the range up to 9 phr.