• 제목/요약/키워드: Material Allowable

검색결과 257건 처리시간 0.032초

열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계 (Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems)

  • 김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

고주파수대역에서 파워흐름해석법을 이용한 구조물의 설계민감도 해석과 위상최적설계 (Design Sensitivity Analysis and Topology Optimization Method for Power Flow Analysis at High Frequency)

  • 박찬영;박영호;조선호;홍석윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.119-126
    • /
    • 2004
  • A continuum-based design sensitivity analysis and topology optimization methods are developed for power flow analysis. Efficient adjoint sensitivity analysis method is employed and further extended to topology optimization problems. Young's moduli of all the finite elements are selected as design variables and parameterized using a bulk material density function. The objective function and constraint are an energy compliance of the system and an allowable volume fraction, respectively. A gradient-based optimization, the modified method of feasible direction, is used to obtain the optimal material layout. Through several numerical examples, we notice that the developed design sensitivity analysis method is very accurate and efficient compared with the finite difference sensitivity. Also, the topology optimization method provides physically meaningful results. The developed is design sensitivity analysis method is very useful to systematically predict the impact on the design variations. Furthermore, the topology optimization method can be utilized in the layout design of structural systems.

  • PDF

열전도 문제에 대한 3 차원 구조물의 위상 최적설계 (Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems)

  • 문세준;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

케미컬 밀링을 이용한 실린더 설계 (Design of cylinder using chemical milling)

  • 이종웅;유준태;장영순;이영무;조광래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.504-509
    • /
    • 2004
  • Chemical machining(CHM) is a special process which material removed by contact of strong etchant. The application as industrial process was started from aircraft industry after 2nd world war. Chemical milling, one of the CHM process, initially became commercial bussiness and it was called chem-mill. Even today, this process widely used to remove the material from aircraft wings and fuselage panel in aircraft industry. In this study, it is attempted to design the cylinder pattern which minimize the weight within the allowable stress using chemical milling.

  • PDF

Chemical Bath Deposition 방법으로 성장된 CdSe 박막의 광전도셀 특성 (Growth and optical properties for CdSe thin film by Chemical Bath Deposition Method)

  • 유상하;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.75-76
    • /
    • 2006
  • olycrystailine CdSe thin films were grown on ceramic substrate using a chemical bath deposition (CBD)method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Its grain size was about 0.3 ${\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and movility depending on temperature. We measured also spectral response, sensitivity($\gamma$), maximum allowable power dissipation and response time on these samples.

  • PDF

THE EFFECTS OF HEAT INPUT AND GAS FLOW RATE ON WELD INTEGRITY FOR SLEEVE REPAIR WELDING OF IN-SERVICE GAS PIPELINES

  • Kim, Young-pyo;Kim, Woo-sik;Bani, In-wan;Oh, Kyu-Hwan
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.390-395
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMA W and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The [mite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

와이블 통계를 이용한 나노컴퍼지트 파괴강도의 평가 (Estimation of Breakdown Properties in Nano-composites using Weibull Statistics)

  • 이강원;이혁진;박희두;김종환;신종열;이충호;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.285-286
    • /
    • 2008
  • Recently, epoxy based nano-composites are being increasingly investigated for their electrical properties, since the introduction of nano fillers demonstrate several advantages in their properties when compared with the similar properties obtained for epoxy systems with micrometer sized fillers. We calculated scale and shape parameter using dielectric strength. In this paper, it is investigated that the allowable' breakdown probability of specimens is stable at some value using Weibull statistics. Therefore we found that breakdown probability of specimens is stable until 20 [%].

  • PDF

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구 (A study on torsional strength of induction hardened axle shaft)

  • 강대현;이범재;윤창배;김강욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF

전자칩 냉각을 위한 소형 히트 파이프에 대한 실험적 연구 (The Experimental Study of Miniature Heat Pipes for Cooling Microprocessor Chips)

  • 이상민;김흥배;양장식;이기백
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.353-358
    • /
    • 2000
  • This paper presents the experimental investigation about miniature heat pipe for notebook PC. The focus of analysis is the operating temperature not to exceed $65^{\circ}C$ maximum allowable CPU surface temperature. Copper is used to heat pipe material and brass is wick material, and working fluid is selected to water. This cooling system is heat spreader method using a aluminum plate, since this method is most commonly used. According to the present study, heat for 3mm heat pipe, 8W, and for 4mm heat pipe, 10W, is found to power dissipation limit respectively, Soon after this investigation, sufficient long term life test should be followed.

  • PDF

열탄성 거동을 나타내는 다층 실린더의 최적설계 (Optimum Design of Thermoelastic Multi-Layer Cylindrical Tube)

  • 조희근;박영원
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.179-188
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. When thermal loads are applied to a multi-layer tube, stress phenomena become complicated due to each layer's thermal expansion and the layer thicknesses. Factors like temperature; stress; and material thermal thicknesses of each tube layer are very difficult undertaking. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF