• Title/Summary/Keyword: Material Allowable

Search Result 257, Processing Time 0.031 seconds

Characteristic Analysis of Modularized HTS Field Coils for a Superconducting Wind Power Generator According to Field Coil Structure (계자 코일 구조에 따른 초전도 풍력 발전기의 모듈화 된 HTS계자 코일의 특성 분석)

  • Tuvdensuren, Oyunjargal;Go, Byeong-Soo;Sung, Hae-Jin;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • High temperature superconducting (HTS) generators for wind power systems are attractively researched with the advantages of high efficiency and smaller size compared with conventional generator. However, the HTS generators have high Lorentz force problem, which acts on HTS field coils due to their high current density and magnetic field. This paper deals with characteristic analysis of the modularized HTS field coil for a 750 kW superconducting wind power generator according to field coil structure. The modularized HTS field coil structure was designed based on the electromagnetic and mechanical analysis results obtained using a 3D finite element method. The electromagnetic force of the module coil was also analyzed. As a result, the perpendicular and maximum magnetic fields of the HTS coils were 2.5 T and 3.9 T, respectively. The maximum stress of the supports was less than the allowable stress of the glass-fiber reinforced plastic material, and displacement was within the acceptable range. The design specifications and the results of the HTS module coil structure can be effectively utilized to develop large-scale superconducting wind power generators.

Distribution Characteristics of Bending Properties for Visual Graded Lumber of Japanese Larch (육안등급으로 구분된 낙엽송 제재목의 휨성능 분포 특성)

  • Lee, Jun Jae;Kim, Gwang Chul;Kim, Kwang Mo;Oh, Jung Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • In reliability based design(RBD) method, the distribution characteristics of mechanical properties of material are basic input variable. Therefore, distribution type and parameters of mechanical properties should be determined accurately. Until now, the properties were derived from tests with small, clear specimens. However, the test conditions should emulate as nearly as possible the way in which the timber would be used in practice and the test results should, as closely as possible, reflect the structural end use conditions to which the timber products would be subjected. In this study, structural timbers (38mm by 140mm, 3.0m long) were graded by visual assessment of growth characteristics and defects. And then bending tests were conducted on 498 structural size timbers. For each grade, the distribution type and the parameters of mechanical properties were determined for each grade. For the determination of best-fit distribution type, comparing of square error between distribution types and KS test were conducted. Best-fit distribution type of bending strength(MOR) is weibull distribution for all grade. In case of MOE, normal distribution is best-fit.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

A Study on the Safety of Powdered Agricultural Products in Incheon (분말 농산물가공품의 안전성 조사)

  • Park, Byung-Kyu;Kim, Sun-Hoi;Ye, Eun-Young;Lee, Han-Jung;Seo, Soon-Jae;Kwon, Sung-Hee;Song, Sung-Min;Joo, Kwang-Sig;Heo, Myung-Je
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • This study was conducted to evaluate pesticide residues and foreign metallic matter on a total of 104 powdered agricultural products in Incheon. Residue testing for 373 pesticides was conducted by GC-MS/MS, LC-MS/MS, GC-ECD, GC-NPD and HPLC-UVD. Foreign metallic matter was detected by magnetic rod. As a result pesticide testing, 7 of the 104 products were found to be within the MRL of the pesticides. The detected pesticides were chlorpyrifos, etofenprox, fenoxanil, malathion, permethrin, tebuconazole and tetraconazole. As for foreign metallic matter, 16 samples were above the allowable limits set by Korean regulations. Therefore, the inspection of residual pesticides in raw material, and the removal of foreign metallic matter will require further stringent attention for the safety of powdered agricultural products.

Shear bond strength of veneer ceramic and colored zirconia by using aqueous metal chloride solutions (염화수화물용액 침지법으로 제작한 유색 지르코니아와 전장도재의 전단결합강도)

  • Yun, Kwi-Dug;Ryu, Su-Kyoung;Vang, Mong-Sook;Yang, Hong-So;Kim, Hyun-Seung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • Purpose: The purposes of this study was to evaluates shear bond strength between zirconia core and veneer-ceramic in order to examine the clinical practice of colored zirconia block fabricated by infiltration method into the metal chloride solution. Material and methods: CNU block and $Everest{(R)}$ ZS blank were used. VITA In-$Ceram{(R)}$2000 YZ Coloring liquid (LL1) and 3 aqueous metal chloride solutions containing chromium and molybdenum ingredients were used. 40 zirconia specimens were prepared into cuboid shape ($5{\times}5{\times}10 mm$). All specimens were divided into 5 groups by infiltrating into the coloring liquids. After that, porcelain was build up into the shape of $5{\times}5{\times}4mm^3$, followed by sintering. The maximum loading and shear bond strength was measured. Failure patterns and failure sites were examined. Results: 1. There were no statistical differences in shear bond strength between zirconia blocks (P > .05). 2. There were no statistically significant differences in shear bond strength between non-colored and colored zirconia blocks, while shear bond strength of non-colored zirconia blocks is higher than that of colored specimen (P > .05). 3. In the comparison with shear bond strength among colored zirconia blocks, there were no statistical differences according to kinds of coloring liquid (P > .05). 4. Mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. The veneering ceramic failure of all specimens was observed in either interface of zirconia or veneering ceramic. Conclusion: Shear bond strength between colored zirconia and veneering ceramic shows lower tendency than non-colored zirconia, but there was clinically allowable value.

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF