The location template matching(LTM) method is a technique of identifying an impact location on a structure, and requires a certain measure of similarity between two time signals. In general, the correlation coefficient is widely used as the measure of similarity, while the group delay based method is recently proposed to improve the accuracy of the impact localization. Another possible measure is the frequency response assurance criterion(FRAC), though this has not been applied yet. In this paper, these three different measures of similarity are examined comparatively by using experimental data in order to understand the properties of these measures of similarity. The comparative study shows that the correlation coefficient and the FRAC give almost the same information while the group delay based method gives the shape oriented information that is best suitable for the location template matching method.
The location template matching (LTM) method is a technique of identifying an impact location on a structure, and requires a certain measure of similarity between two time signals. In general, the correlation coefficient is widely used as the measure of similarity, while the group delay based method is recently proposed to improve the accuracy of the impact localization. Another possible measure is the frequency response assurance criterion (FRAC), though this has not been applied yet. In this paper, these three different measures of similarity are examined comparatively by using experimental data in order to understand the properties of these measures of similarity. The comparative study shows that the correlation coefficient and the FRAC give almost the same information while the group delay based method gives the shape oriented information that is best suitable for the location template matching method.
In object tracking, the template matching methods have been developed and frequently used. It is fast enough, but not robust to an object with the variation of size and shape. In order to overcome the limitation of the template matching method, this paper proposes a template update technique. After finding an object position using the correlation-based adaptive predictive search, the proposed method selects blocks which contain object's boundary. It estimates the motion of boundary using block matching, and then updates template. We applied it to IR image sequences including an approaching object. From the experimental results, the proposed method showed successful performance to track object.
오늘날 인간은 기계와의 상호의사소통을 이용하여 기계를 더욱 발전시켜가고 있다. 시각기반인지시스템을 비롯한 여러 HCI(Human Computer Interaction)시스템 중 손가락 제스처를 인식, 추적하는 기술은 HCI 시스템에서 매우 중요한 부분을 차지하고 있다. 이 논문에서는 손가락을 구분하기 위해서 제한된 배경과 복잡한 배경에서의 손가락을 구분할 뿐만 아니라 배경과 전경을 분리하는 차영상을 이용하여 더욱더 효과적으로 손가락을 구분해내는 방법을 이용한다. 손가락을 구분하기 위해서는 미리 정의해놓은 손가락 끝 이미지들과 Template-Matching 을 통하여 손가락을 인식한다. 그리고 인식된 손가락을 추적한 후 미리 정의해놓은 제스처들과 비교함으로써 제스처를 인식한다. 이 논문에서는 차영상과 Template Matching 반을 이용하지 않고 미리 관심영역을 획득한 후 그 영역 안에서 Template Matching 을 수행한다. 그래서, 실행속도 및 반응속도를 줄이는 데 중점을 두고 있으며 더욱 효과적으로 제스처를 인식하는 방법에 대해 제안한다.
In this paper, we have developed a target recognition algorithm based on a template matching technique using Synthetic Aperture Radar (SAR) images. For efficient computations, Radon transform-based azimuth estimation algorithm was used with the template matching. MSTAR data set was divided into two groups according to the depression angles, which were a train set and a test set. Template data were generated by rotating and cropping chips which were from MSTAR train set using the azimuth estimation algorithm. Then the template matching process between test data and template data was performed under various conditions. Performance variation according to contrast enhancement preprocessing which is scarce in open literature was also presented. The analysis results show that the target recognition algorithm could be useful for the automatic target recognition using SAR images.
추천시스템은 개인화 서비스를 구현하는 방법 중의 하나이다. 추천시스템은 다양한 기법을 통해 구축될 수 있는데, 최근 전자상거래 분야에서 사용되는 기법들 중에서 대표적인 것이 협업필터링이다. 협업필터링은 영화나 음악 같이 명시적인 속성만으로 그 특성을 기술하는데 한계가 있는 아이템의 추천문제에 효과적으로 적용되어 왔다. 하지만, 이 기법은 희박성, 확장성 및 투명성 등의 문제점을 가지고 있는데, 본 연구에서는 희박성과 확장성 문제를 극복하는 방안으로 장르별 협업필터링 방법을 제안한다. 장르별 협업필터링 방법은 아이템을 최종적으로 추천하기 전에 아이템의 상위 카테고리, 즉 장르에 대한 정보를 활용하는 방법이다. 본 연구에서 제안하는 방법의 실용성을 보이기 위하여, 영화 추천시스템인 GenreWise_CF를 개발하여, 공개 데이터인 MovieLens Data에 적용하여 평가하였다. 실험 결과, 본 연구에서 제안한 GenreWise_CF가 전통적인 협업 필터링을 적용하여 개발한 추천시스템인 Basic_CF보다 향상된 성능을 보였다.
본 논문에서는 비젼을 이용한 영상처리 기술을 기반으로 비접촉식 미세 측정 광학기에 의해 측정된 이미지를 템플릿 매칭과 B-Spline 보간법에 의해 보다 빠르고, 정밀한 복원 기법을 제안한다. 이를 위해 먼저 각각의 이미지로부터 매칭 템플릿과 피 매칭 템플릿을 검출한다. 그런 다음 기준면으로부터 두 이미지의 중첩되는 부분의 롤, 피치, 요 오차를 보정하여 정합시킨다. 그리고 B-Spline 보간법에 의해 정합된 부분을 연속화한다. 마지막으로, 제안된 방법은 실험을 통해 그 응용 가능성을 증명한다.
We propose a template matching method for component inspection of SMD assembly system. To discriminate wrong assembled components, the input image of component is matched with its standard image by template matching algorithm. For a fast inspection system, the calculation time of matching algorithm should be reduced. Since the standard images of all components located in a PCB are stored in computer, it is desirable to reduce the memory size of standard image. We apply the discrete wavelet transformation to reduce the image size as well as the calculation time. Only 7% memory of the BMP image is used to discriminate goodness or badness of components assembly. Comparative results are presented to verify the usefulness of the proposed method.
In this paper, we propose object classification algorithm for real-time surveillance system. We have approached this problem using silhouette-based template matching. The silhouette of the object is extracted, and then it is compared with representative template models. Template models are previously stored in the database. Our algorithm is similar to previous pixel-based template matching scheme like Hausdorff Distance, but we use 1D image array rather than 2D regions inspired by Hilbert Path. Transformation of images could reduce computational burden to compute similarity between the detected image and the template images. Experimental results show robustness and real-time performance in object classification, even in low resolution images.
This paper proposes the robust matching algorithm of the optical images. To do this, we propose two algorithms, that is, matching algorithms when the silhouette of images is detected and when it is not detected. Also, we propose the method for detecting the matching template and non-matching template from each optical image. And then, optical images are matched according to the coefficient of correlation represented by the similar degree between optical images. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.