• Title/Summary/Keyword: Matching prior

Search Result 155, Processing Time 0.021 seconds

Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images (위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.272-275
    • /
    • 2016
  • This paper presents a method of single image dehazing and surface-based feature detection for remote sensing images. In the conventional dark channel prior (DCP) algorithm, the resulting transmission map invariably includes some block artifacts because of patch-based processing. This also causes image blur. Therefore, a refined transmission map based on a hidden Markov random field and expectation-maximization algorithm can reduce the block artifacts and also increase the image clarity. Also, the proposed algorithm enhances the accuracy of image matching surface-based features in an remote sensing image. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal. Moreover, the proposed algorithm is suitable for the problem of image matching based on feature extraction.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Radiocarbon Dating of a Wooden Board from Jeongsusa Temple Using Wiggle Matching of Quinquennial Tree-Ring Samples (5년 간격 연륜의 위글매치를 이용한 정수사 법당 목부재의 방사성탄소연대 측정)

  • Nam, Tae-Kwang;Park, Jung-Hun;Hong, Wan;Park, Won-Kyu
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper reports the application of radiocarbon wiggle-matching for Korean wooden artifacts such as buildings and Buddhist statues for precise dating. Nine quinquennial (every five-year) samples of 41 years (AD 1250-1290) for AMS radiocarbon measurements were prepared from a wooden board used for the Main Hall at Jeongsusa (temple) in Kangwhado, Korea, which was dendrochronologically dated. The 95.4% confidence interval of radiocarbon dating prior to wiggle matching was 113.3 year in average. When wiggle-matching technique was applied, it became 20 years, 5.7 times smaller than that produced without wiggle matching. The results indicated that wiggle-matching technique using the calibration curve for northern hemisphere (IntCal04) can produce precise dates for Korean wooden artifacts, at least, for the $13^{th}$ century.

An Optimal Way to Index Searching of Duality-Based Time-Series Subsequence Matching (이원성 기반 시계열 서브시퀀스 매칭의 인덱스 검색을 위한 최적의 기법)

  • Kim, Sang-Wook;Park, Dae-Hyun;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1003-1010
    • /
    • 2004
  • In this paper, we address efficient processing of subsequence matching in time-series databases. We first point out the performance problems occurring in the index searching of a prior method for subsequence matching. Then, we propose a new method that resolves these problems. Our method starts with viewing the index searching of subsequence matching from a new angle, thereby regarding it as a kind of a spatial-join called a window-join. For speeding up the window-join, our method builds an R*-tree in main memory for f query sequence at starting of sub-sequence matching. Our method also includes a novel algorithm for joining effectively one R*-tree in disk, which is for data sequences, and another R*-tree in main memory, which is for a query sequence. This algorithm accesses each R*-tree page built on data sequences exactly cure without incurring any index-level false alarms. Therefore, in terms of the number of disk accesses, the proposed algorithm proves to be optimal. Also, performance evaluation through extensive experiments shows the superiority of our method quantitatively.

Financial Forecasting System using Data Editing Technique and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 재무예측시스템)

  • Kim, Gyeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.283-286
    • /
    • 2007
  • This paper proposes a genetic algorithm (GA) approach to instance selection in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in complex problem solving. Nonetheless, compared to other machine learning techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for instance selection in CBR.

  • PDF

Engineering Information Search based on Ontology Mapping (온톨로지 매핑 기반 엔지니어링 정보 검색)

  • Jung Min;Suh Hyo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.30-36
    • /
    • 2006
  • The participants in collaborative environment want to get the right information or documents which are intended to find. In general search systems, documents which contain only the keywords are retrieved. For searching different word-expressions for the same meaning, we perform mapping before searching. Our mapping-based search approach has two parts, ontology-based mapping logic and ontology libraries. The ontology-based mapping consists of three steps such as character matching (CM), definition comparing (DC) and similarity checking (SC). First, the character matching is the mapping of two terminologies that have identical character strings. Second, the definition comparing is the method that compares two terminologies' ontological definitions. Third, the similarity checking pairs two terminologies which were not mapped by two prior steps through evaluating the similarity of the ontological definitions. For the ontology libraries, document ontology library (DOL), keyword ontology library (KOL), and mapping result library (MRL) are defined. With these three libraries and three mapping steps, an ontology-based search engine (OntSE) is built, and a use case scenario is discussed to show the applicability.

The Moving Object Detecting and Tracking System Using the Difference Images (차영상을 이용한 이동 방향 검출 및 추적 시스템)

  • Moon, Cheol-Hong;Kim, Sung-Oh;Kim, Kap-Sung;Jang, Dong-Young;Roo, Young-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.421-422
    • /
    • 2006
  • Using the still image through the camera reports which the moving object tracking system. Moving object direction detected to compare the two difference images. And base block set at moving object. Matching area set current difference image. The edge image of prior frame and current frame implement the moving object tracking system to block matching.

  • PDF

Developing Noninformative Priors for the Common Mean of Several Normal Populations

  • Kim, Yeong-Hwa;Sohn, Eun-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.59-74
    • /
    • 2004
  • The paper considers the Bayesian interval estimation for the common mean of several normal populations. A Bayesian procedure is proposed based on the idea of matching asymptotically the coverage probabilities of Bayesian credible intervals with their frequentist counterparts. Several frequentist procedures based on pivots and P-values are introduced and compared with Bayesian procedure through simulation study. Both simulation results demonstrate that the Bayesian procedure performs as well or better than any available frequentist procedure even from a frequentist perspective.

  • PDF

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

Template Check and Block Matching Method for Automatic Defects Detection of the Back Light Unit (도광판의 자동결함검출을 위한 템플릿 검사와 블록 매칭 방법)

  • Han Chang-Ho;Cho Sang-Hee;Oh Choon-Suk;Ryu Young-Kee
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.377-382
    • /
    • 2006
  • In this paper, two methods based on the use of morphology and pattern matching prior to detect classified defects automatically on the back light unit which is a part of display equipments are proposed. One is the template check method which detects small size defects by using closing and opening method, and the other is the block matching method which detects big size defects by comparing with four regions of uniform blocks. The TC algorithm also can detect defects on the non-uniform pattern of BLU by using revised Otsu method. The proposed method has been implemented on the automatic defect detection system we developed and has been tested image data of BLU captured by the system.