• Title/Summary/Keyword: Matching Condition

Search Result 454, Processing Time 0.029 seconds

LNA Design Uses Active and Passive Biasing Circuit to Achieve Simultaneous Low Input VSWR and Low Noise (낮은 입력 정재파비와 잡음을 갖는 수동 및 능동 바이어스를 사용한 저잡음증폭기에 관한 연구)

  • Jeon, Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1263-1268
    • /
    • 2008
  • In this paper, the low noise power amplifier for GaAs FET ATF-10136 is designed and fabricated with active bias circuit and self bias circuit. To supply most suitable voltage and current, active bias circuit is designed. Active biasing offers the advantage that variations in the pinch-off voltage($V_p$) and saturated drain current($I_{DSS}$) will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets a gate-source voltage($V_{gs}$) for the desired drain voltage and drain current. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA, suitable for input stage matching and gate source bias. The LNA is fabricated on FR-4 substrate with active and self bias circuit, and integrated in aluminum housing. As a results, the characteristics of the active and self bias circuit LNA implemented more than 13 dB and 14 dB in gain, lower than 1 dB and 1.1 dB in noise figure, 1.7 and 1.8 input VSWR at normalized frequency $1.4{\sim}1.6$, respectively.

Analytical Study of heat Transfer in Evaporative Cooling of a Porous Layer (다공층의 증발냉각 열전달에 관한 해석적 연구)

  • 김홍제;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.104-111
    • /
    • 1992
  • In this study, the heat transfer characteristics of the evaporative transpiration cooled system is analytically investigated considering the occurrence of the two-phase evaporation zone. Under the condition of the external heat input, analytical solutions of the three regions (i.e., vapor, liquid and two-phase evaporation zone) are respectively obtained using the matching conditions for the steady-state problem where properties are constant. As results, the length of the evaporation zone increases with increasing heat input and with decreasing mass flow rate. It also increases with increasing particle size, system porosity, thermal conductivity of material, inlet temperature and latent heat of coolant. The position of the lower interface of the evaporation zone have a lot of efforts on the evaporation zone length, the position of the upper interface penetrates deeper into the porous layer with lower thermal conductivity of porous material, higher system porosity and larger particle size.

A Study on the Floating OWC Chamber Motion in Waves (부유기 OWC 챔버의 파중 운동해석)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

A Study on the Floating OWC Chamber Motion in Waves (부유식 OWC 챔버의 파중 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.191-197
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating.air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be used for the analysis of air-cushion vehicle motion as well as for the design oj a floating owe wave energy absorber.

  • PDF

Motion Estimation and Machine Learning-based Wind Turbine Monitoring System (움직임 추정 및 머신 러닝 기반 풍력 발전기 모니터링 시스템)

  • Kim, Byoung-Jin;Cheon, Seong-Pil;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1516-1522
    • /
    • 2017
  • We propose a novel monitoring system for diagnosing crack faults of the wind turbine using image information. The proposed method classifies a normal state and a abnormal state for the blade parts of the wind turbine. Specifically, the images are input to the proposed system in various states of wind turbine rotation. according to the blade condition. Then, the video of rotating blades on the wind turbine is divided into several image frames. Motion vectors are estimated using the previous and current images using the motion estimation, and the change of the motion vectors is analyzed according to the blade state. Finally, we determine the final blade state using the Support Vector Machine (SVM) classifier. In SVM, features are constructed using the area information of the blades and the motion vector values. The experimental results showed that the proposed method had high classification performance and its $F_1$ score was 0.9790.

"Live within your role!": The impact of communication style of social robot on companionship ("Live within your role!": 소셜 로봇의 커뮤니케이션 스타일이 사용자와의 동반자 관계에 미치는 영향)

  • Lee, Wonouk;Jeon, Seongjun;Kim, Jinwoo
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.5-10
    • /
    • 2018
  • This paper provokes considerations on companionship. As human-robot relation becomes important, the role and communication styles of robot become crucial. In order to see how we should design communication styles of social robots, we generated scenarios based on pre-studies. Then, we conducted a $2{\times}2$ experiment to compare four different conditions by expected role and communication style. We divided expected roles into playing and serving role by dominance level. Also, we matched communication style on one condition and mismatched on the other. The results imply matching role with communication style is crucial in some role, however not in every role. As HCI expands to human-computer relation, our study would inspire future research on companionship between human and robots.

  • PDF

The Effect of Similarity Condition for the Test Results in a Wind Tunnel Test (풍동실험에서 상사조건이 실험결과에 미치는 영향에 관한 연구)

  • 봉춘근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.351-362
    • /
    • 2000
  • To set the similarity conditions between a prototype usually in the field and its reduced-scale model is a crucial part in model tests. No technique is available to keep perfect similarity for this procedure so far. The experimental work using a wind tunnel is not exceptional. based on the field measurements, the effect of stack parameters and wind conditions on the dispersion of stack plume has been investigated in the laboratory. in this paper intensive methodology is focused on matching these similarities. Due to the limitations to keep perfect similarity conditions some simplifications are involved in common. In this study geometric conditions and kinematic conditions using Froude number and Reynolds number have been con-sidered to keep the similarity conditions required. From the tests it is found that the critical Reynolds number (Recrit) is 2,700 when the height of stack discharge is 50mm. The dispersion has a similar trend for the higher Reynolds number than the critical Reynolds number. It is also found that different Froude number does not make any significant influence for the normalized tracer gas concentrations at the recipient providing the same ratio of the wind speed to the discharge speed. No significant effect of stack diameter is observed in the normalized tracer gas concentrations with the same Frounde number. The similarity conditions therefore used in this study are reliable to simulate the conditions in prototype into the wind tunnel tests.

  • PDF

Trajectory Optimization for Nonlinear Tracking Control in Stratospheric Airship Platform (비선형 추종제어를 위한 성층권비행선의 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Choong;Chang, Jae-Won;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.42-54
    • /
    • 2009
  • Contrast to the 6-DOF nonlinear dynamic modeling of nonlinear tracking problem, 3-DOF point-mass modeling of flight mechanics is efficient and adequate for applying the trajectory optimization problem. There exist limitations to apply an optimal trajectory from point-mass modeling as a reference trajectory directly to conduct the nonlinear tracking control, In this paper, new matching trajectory optimization scheme is proposed to compensate those differences of mismatching. To verify performance of proposed method, full ascent three-dimensional flight trajectories are obtained by reflecting the real constraints of flight conditions and airship performance with and without jet stream condition. Then, they are compared with the optimal trajectories obtained from conventional method.

Traversable Region Detection Algorithm using Lane Information and Texture Analysis (차로 수 정보와 텍스쳐 분석을 활용한 주행가능영역 검출 알고리즘)

  • Hwang, Sung Soo;Kim, Do Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.979-989
    • /
    • 2016
  • Traversable region detection is an essential step for advanced driver assistance systems and self-driving car systems, and it has been conducted by detecting lanes from input images. The performance can be unreliable, however, when the light condition is poor or there exist no lanes on the roads. To solve this problem, this paper proposes an algorithm which utilizes the information about the number of lanes and texture analysis. The proposed algorithm first specifies road region candidates by utilizing the number of lanes information. Among road region candidates, the road region is determined as the region in which texture is homogeneous and texture discontinuities occur around its boundaries. Traversable region is finally detected by dividing the estimated road region with the number of lanes information. This paper combines the proposed algorithm with a lane detection-based method to construct a system, and simulation results show that the system detects traversable region even on the road with poor light conditions or no lanes.