• Title/Summary/Keyword: Matched Asymptotic Expansion

Search Result 17, Processing Time 0.022 seconds

On the extinction of partially premixed diffusion system and the near- stoichiometric structure of premixed flames (부분 예혼합-확산계의 소화특성 및 예혼합 화염의 Near-Stoichiometry 구조에 관한 연구)

  • 김종수;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.72-80
    • /
    • 1988
  • Partially premixed diffusion system is analyzed using the matched asymptotic expansion technique adopting counterflow with supplying fuel and oxidizer from one side and fuel only from the other as a model problem. Results show that single-stage extinction always occurs as stretch increases, and the partially premixed diffusion flame can hardly exist. Depending on the initial mixture concentrations, either premixed or diffusion flame extinction leads to complete extinction of the system, and the diffusion flame can change its character to premixed flame such that two premixed flames can exist in the partially premixed-diffusion system.

Negative Drift Forces Acting on a 2-Dimensional Cylinder inSlightly Modulated Waves (유한수심의 불규칙파에 놓인 2차원 주상체에 작용하는 음의 표류력)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper negative drift forces are discussed, which act on a two-dimensional cylinder exposed to slightly modulated waves in water of finite depth. By combining matched asymptotic expansion method with multiple scale technique, it is clearly shown that the slowly-varying drift force can be negative under certain circumstances: i) Incident waves are irregular or slightly modulated. ii) The water depth is finite compared to the wave length of carrier waves. iii) The gap between the keel of the cylinder and ocean floor is narrow. Then the negative drift forces are caused by the unbalance of hydrostatic force associated with set down. Real fluid and wave breaking effects are not considered.

  • PDF

On the Study of the Mass Transport near the Entrance of Inclined Breakwaters due to Viscosity (점성 효과에 의한 경사진 방파제 입구에서의 토사 이동에 관한 연구)

  • Cho, I. H.;Gong, D. S.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.25-31
    • /
    • 1992
  • Herein we investigate the mass transport velocity caused by the viscosity near the ocean structure such as circular pile and inclined breakwaters. The mass transport velocity which is represented by the sum of the Eulerian velocity and the stokes drift were derived by Carter, Liu and Mei(1973). The tangential components of the inviscid velocity field at the bottom needed in the calculation of the mass transport velocity is obtained by solving the scattering problem due to breakwaters. The matched asymptotic expansion technique is employed to obtain the inviscid flow fields scattered by inclined breakwaters. The numerical results show that heary sediments tends to be deposited near the center of breakwaters and that the narrowing of the entrance width results in reduction of the magnitude of mass transport.

  • PDF

On the Characteristics of Hydrodynamic Forces in a Restricted Water (제한수역에서의 동유체력에 대한 고찰)

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 1992
  • A study has been made on the hydrodynamic forces on and the motion response of a sliding block in a bay within the framework of linear potential theory. To simplify the problem, following assumptions are made : The configuration of the bay is a long channel with narrow width, constant depth and straight coastline. Incident waves are long compared to the depth. We applied matched asymptotic expansion techniques. The flued domain is subdivided into three regions ; ocean, bay entrance, bay regions. Boundary-vague problems are solved first in each region. Then unknown coefficients are determined by matching individual solutions at the intermediate region between two neighboring legions. It is found that the motion of the block is greatly amplified at the resonant frequencies, in particular at the quarter wavelength mode. We examined the mechanism of negative added mass, which results from the localized hydrodynamic resonance.

  • PDF

On the Study of the Motion Response of a Vessel Moored in the Region Sheltered by Inclined Breakwaters (경사진 방파제에 계류된 선체 운동응답에 관한 연구)

  • Cho, I.H.;Hong, S.Y.;Hong, S.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.33-42
    • /
    • 1992
  • In this paper we investigate the motion response of a moored ship in the fluid region sheltered by inclined breakwaters. The matched asymptotic expansion technique is employed to analyze the wave fields scattered by the inclined breakwaters. Fluid domain is subdivided into the ocean, entrance and sheltered regions. Unknown coefficients contained in each region can be determined by matching at the intermediate zone between two neighboring regions. The wave field generated by the ship motion can be analyzed in terms of Green's function method. To obtain the velocity jump across the ship associated with the symmetric motion modes, the sheltered region is further divided into near field of the ship and the rest field. The image method is introduced to consider the effect of the pier near the ship. The integral equation for the velocity jump is derived by the flux matching between the inner region and the outer region of a moored ship. Throughout the numerical calculation it is found that the inclined angle width of entrance of breakwaters as well as the location of moored vessel play an important role in the motion response of a moored ship.

  • PDF

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(I) (항만내 파도응답과 계류선박의 운동해석(I))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 1992
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Within the framework of potential theory, matched asymptotic expansion techniques are exployed to analyze the problem. The fluid domain is divided into the ocean and the harbor regions for the analysis of wave response in a harbor without ship. The wave responses in both the ocean and the harbor sides are solved first independently in terms of Green's functions, which are the solutions of the Helmholtz equation satisfying appropriate boundary conditions. Slender body approximations are used to obtain the velocity jumps across the ship, which are associated with the symmetric motion modes of the ship. Unknowns contained in each solution are finally determined by matching at an intermediate zone between two neighboring regions. Theoretical results predict the ship motion qualitatively well. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

Characteristics of Wave Response in a 'Y' Shape Water Channel Resonator Using Resonance of Internal Fluid (내부유체 공진을 이용한 'Y'자 수로형 공명구조물내 파도응답 특성)

  • Kim, Jeongrok;Cho, Il Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2019
  • In this study, the wave responses in a 'Y'shape water channel resonator for amplifying wave energy of a low density has been investigated. A water channel resonator is composed of the long channel and wave guider installed at the entrance. If the period of the incident waves coincides with the natural period of the fluid in a water channel resonator, resonance occurs and the internal fluid amplifies highly to a standing wave form. In order to analyze the wave response in a water channel resonator, we used the matched asymptotic expansion method and boundary element method. The both results were in good agreement with the results of the model test carried out in the two-dimensional wave tank of Jeju National University. Wave guider has an optimum length and installation angle according to the period of the incident wave, and especially effective in enhancing the amplification factor in a period range deviated from the resonance period. It is expected that the wave energy can be effectively extracted by placing the point absorber wave energy converter at the position of anti-node where the maximum wave height is formed by the internal fluid resonance.