• Title/Summary/Keyword: Mass transfer rate

Search Result 862, Processing Time 0.035 seconds

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Facilitated Transport of Cr(VI) through a Supported Liquid Membrane with a Carrier

  • Park, Sang-Wook;Lee, Jae-Wook;Kim, Sung-Soo;Choi, Byoung-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.154-164
    • /
    • 2003
  • This paper has applied a simple model to the mass transfer mechanism of Cr(VI) with crownether in a batch-type, supported liquid membrane module. Concentration at pH 3 are as follows : 0.012 kmol/$m^3{\le}$18-crown-6${\le}$0.036 kmol/$m^3$ and 20 g/$m^3{\le}$ Cr(VI)${\le}$500 g/$m^3$. The measured values of forward- and backward-reaction rate constants between Cr(VI) and 18-crown-6 were used to simulate the model with the mass conservation equation and associated boundary conditions. Comparison between the experimental and simulated facilitated factor of Cr(VI) transport led to classification of reaction regions.

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Design Criterion for the Size of Micro-scale Pt-catalytic Combustor in Respect of Heat Release Rate (열 방출률에 대한 마이크로 백금 촉매 연소기의 치수 설계 기준)

  • Lee, Gwang Goo;Suzuki, Yuji
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • Design criterion for the size of micro Pt-catalytic combustor is investigated in terms of heat release rate. One-dimensional plug flow model is applied to determine the surface reaction constants using the experimental data at stoichiometric butane-air mixture. With these reaction constants, the mass fraction of butane and heat release rate predicted by the plug flow model are in good agreement with the experimental data at the combustor exit. The relationship between the size of micro catalytic combustor and mixture flowrate is introduced in the form of product of two terms-the effect of fuel conversion efficiency, and the effect of chemical reaction rate and mass transfer rate.

Determination of Enthalpy in the 150kW Arc-Jet (150kW 아크제트 유동의 엔탈피 결정)

  • Na, Jae Jeong;Lee, Jeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.547-551
    • /
    • 2013
  • Mass averaged and core enthalpy in the arc jet flow are obtained experimentally. The experiment is made for the 150kW Huels type arc-jet applying the test condition for the research of gasturbine engine injection cooling technique. The mass averaged enthalpy value determined by the sonic throat method is 5.5MJ/kg. The core enthalpy value determined by the heat transfer rate method is 14.3MJ/kg. Based on result of experiment, the ratio of the core to mass averaged enthalpies is 2.6.

Design Study of a Korean Mars Mission

  • Lee, Eun-Seok;Chang, Keun-Shik;Park, Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • In this paper we carried out a design study for an unmanned Mars missionsuitable for Republic of Korea. The mission will use a KSLV series launch system,which is to place a one tonne payload into the LEO. We calculated the velocityincrements(AV) required for departure from Earth and insertion into the orbitaround Mars based on the mission opportunity data provided by NASA. Two typesof Mars modules - entry type and orbiter type - were considered in this studyWe calculated the mass of TPS(therma1 protection system) for the entry tvpe Marsmodule based on the heat transfer rate and heat load from the Mars atmosphere tothe surface of the TPS. The heat transfer rate and heat load were obtained throughan entry trajectory calculation. For the orbiter type Mars module, we calcuIated themass breakdown of the additional spacecraft which is to insert the Mars moduleinto the orbit around Mars. Other mass items were determined by proportioningfrom the existing Mars modules. This paper finally proposes the payload capacitiesfor each types of Mars modules.

Numerical Calibration method of an Electrochemical Probe for Measurement of Wall-Shear-Stress in Two-Phase Flow

  • Park, Ki-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.227-232
    • /
    • 1996
  • The one-third calibrating relation by steady solution can cause large error when applied to an unsteady flow with large amplitude waves. Extended calibrating method, which can treat the normal convective contribution, is developed. The normal mass convective term is included into the 2-D mass transport equation by means of rms value and random function. The unknown shear rate is numerically determined by solving the 2-D mass transport equation inversely. This recovery method which predicts the unknown shear rate is constructed. It is found that it works very well without distortion. The inclusion of the normal convective term has a negligible effect on the mass transfer coefficient.

  • PDF

Effect of Temperature, Solvent Concentration, and pH on the β-Glucan Extraction (β-Glucan 추출에 미치는 온도, 용매 농도 및 pH의 영향)

  • Lee, Sang Hoon;Jang, Gwi Yeong;Kim, Kee Jong;Lee, Mi Ja;Kim, Tae Jip;Lee, Junsoo;Jeong, Heon Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.871-877
    • /
    • 2012
  • This study investigated the effects of temperature, solvent concentration, and pH on the ${\beta}$-glucan extraction. Oat bran ${\beta}$-glucan was extracted with different extraction conditions, using various combinations of experiment factors, such as temperature (40, 45, 50, 55, and $60^{\circ}C$), ethanol concentration (0, 5, 10, 15, and 20%), and pH (5, 6, 7, 8, and 9). Under the various extraction conditions, ${\beta}$-glucan extraction rate and overall mass transfer coefficient of oat bran ${\beta}$-glucan, and viscosity of oat bran extracts were investigated. As increasing the extraction time, the extraction rate of ${\beta}$-glucan increased. The overall mass transfer coefficient of ${\beta}$-glucan ranged from $3.36{\times}10^{-6}$ to $8.55{\times}10^{-6}cm/min$, indicating the lowest at the extraction condition of $45^{\circ}C$, 15% and pH 8, and the highest at $50^{\circ}C$, 0% and pH 7. It was significantly greater with increasing extraction temperature and decreasing ethanol concentrations of extraction solvent, except for solvent pH. There were positive correlations among the overall mass transfer coefficient, the extraction rate of ${\beta}$-glucan, and the viscosity of extract.

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF