• Title/Summary/Keyword: Mass transfer rate

Search Result 857, Processing Time 0.028 seconds

Numerical Study on the Flow Characteristics of Flat-Plate Solar Collector with Riser Number (평판형 집열기의 지관수에 따른 유동특성에 대한 수치해석 연구)

  • Kim, Jeong-Bae;Lee, Dong-Won;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.143-148
    • /
    • 2007
  • It is essential to know the flow characteristics at the risers of Flat-plate solar collector for optimum design. For flat-plate solar collector, it is difficult to experimentally study the effect for the number of riser in the collector for the economic problem. So, this study was performed to show the flow characteristics of flat-plate solar collector with the number of riser using commercial code FLUENT 6.0. The base collector size is chosen with $2\;m^2$ as 1m by 2m in this study, the mass flow rate was estimated 0.04 kg/s using the mass flow rate of 0.02 kg/s per collector area for the certificate test. The number of riser is selected 4, 6, 8, 10, 12, and 14. Through the simulation, the conditions with the risers of 10 or 12 is shown as the optimum design conditions for conventional flat-plate solar collector considering lower pressure drop and more uniformly distributed mass flow rate for higher heat transfer rate without considering heat transfer.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

Surfactant Selection for the Enhanced Biological Degradation of Toluene (Toluene의 생물학적 분해능 향상을 위한 계면활성제의 선정)

  • Kim Yong-Sik;Son Young-Gyu;Khim Jee-Hyeong;Song Ji-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.26-32
    • /
    • 2005
  • Surfactants can be used to enhance the mass transfer rate of hydrophobic compounds into the biologically active liquid phase, resulting in an increase in biodegradation rate of toluene. In this study, the mass transfer rate and the biocompatibility of toluene in the presence of various surfactants were evaluated. Four anionic and non ionic surfactants were tested: sodium dodecyl sulfate (SOS), TritonX-100, Tween 80, and BYK-345 (silicone surfactant). Experimental results showed that BYK-345 at the critical micelle concentration (CMC) enhanced the solubility of toluene. However, there was no increase in the solubility of toluene by SOS and TritonX-100 at their CMCs. With the addition of each surfactant into deionized water the mass transfer rate became faster than that of the case with no surfactant. A bottle study using toluene-degrading microorganisms showed that SOS seriously reduced toluene removal presumably due to the toxicity of the anionic surfactant and/or the substrate competition between the surfactant and toluene. In addition, the degradation rate of toluene was decreased in the presence of BYK-345, indicating that BYK-345 adversely affects the activity of microorganisms. However, TritonX-100 and Tween 80 did not decrease the degradation rate of toluene significantly. Rather, at the low concentration of TritonX-100 toluene degradation rate was even increased. Overall the experimental results suggest that TritonX-100 be the appropriate surfactant for enhanced biological degradation of toluene.

An Experimental and Mathematical Study on the Effects of Ignition Energy and System on the Flame Kernel Development

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.829-838
    • /
    • 2002
  • A constant volume combustion chamber is used to investigate the flame kernel development of gasoline air mixtures under various ignition systems, ignition energies and spark plugs. Three kinds of ignition systems are designed and assembled, and the ignition energy is controlled by the variation of the dwell time. Several kinds of spark plugs are also tested. The velocity of flame propagation is measured by a laser deflection method, and the combustion pressure is analyzed by the heat release rate and the mass fraction burnt. The results represent that as the ignition energy is increased by enlarging either dwell time or spark plug gap, the heat release rate and the mass fraction burnt are increased. The electrodes materials and shapes influence the flame kernel development by changing he transfer efficiency of electrical energy to chemical energy. The diameter of electrodes also influences the heat release rate and the burnt mass fraction.

Scale-up of Flat Panel Photobioreactor considering Hydrodynamics (수력학을 고려한 평판형 광생물 반응기의 스케일업에 관한 연구)

  • Kim, Gwang-Ho;Lee, Dong-Woon;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.48-56
    • /
    • 2018
  • Due to the growing concerns of energy resource depletion and environmental destruction, the mass production of microalgae has been studied. The scale-up of a photobioreactor (PBR) is required for the mass production of biomass. In this paper, the geometric parameters and oxygen transfer rate (OTR) are considered, to scale up a flat panel photobioreactor (FP PBR). The PBR is designed using the goal-driven optimization (GDO) method to accomplish the scale-up. The local sensitivity of each output parameter with respect to the input parameter is analyzed through the design of experiment (DOE), and the design candidates are evaluated with the screening sampling method. The volumetric mass transfer coefficient is measured by the dynamic method.

Mass Transfer Characteristics and Browning Inhibition by Osmotic Dehydration of Mushrooms (양송이의 삼투압 건조에 따른 물질이동 특성과 갈변억제)

    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.903-907
    • /
    • 1998
  • Mass transfer characteristics during osmotic dehydration of mushrooms(Agaricus bisporus) in sugar solution were studied as a function of sugar concentration, immersion time and temperature, and the effect of osmotic dehydration on browning inhibition of air-dried mushrooms was also evaluated. Increasing the sugar concentration, immersion time and temperature increased moisture loss, sugar gain, molality and rate parameter. The changes of sugar gain and rate parameter were more significantly affected by concentration than by temperature of sugar solutions, while 1$0^{\circ}C$ increase in temperature or 10 Brix increase in concentration had the same effect on water loss. Water loss, sugar gain, molality were rapid in the first period of osmotic dehydration especially in the case of higher concentration and temperature of sugar solutions. Effects of osmotic dehydration in sugar solution(60 Brix, 8$0^{\circ}C$) with 18 min of immersion time(O.D.=0.099) rior to air dehydration on browning inhibition of dried mushrooms were more significant than blanching in water(8$0^{\circ}C$) with the same immersion time(O.D.=0.330) and the control (O.D.=0.559).

  • PDF

Numerical Analysis of the Heat and Mass Transfer Characteristics in Metal-Supported Solid Oxide Fuel Cell (금속지지체형 고체산화물 연료전지의 열 및 물질전달 특성에 대한 전산해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.143-146
    • /
    • 2009
  • The metal-supported SOFC has beed developed as a new concept of SOFC which has higher mechanical strength. However, the mass transfer rate in this type of SOFC may be decreased due to the contact layer and the support layer and that can cause the low performance. Therefore, numerical analysis of the heat and mass transfer characteristics in a metal-supported solid oxide fuel cell(SOFC) is studied in this paper. Governing equations and electrochemical equations are calculated simultaneously. And the numerical results are compared with the experimental results for the code validation. The current density, temperature, and pressure drop are suggested as numerical results.

  • PDF