• Title/Summary/Keyword: Mass transfer model

Search Result 641, Processing Time 0.027 seconds

Modeling of the dynamic behavior of a 12-V automotive lead-acid battery (12V 차량용 납축전지의 동적 거동 모델링)

  • Kim, Sung Tae;Lee, Jeong Bin;Kim, Ui Seong;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2013
  • For the optimal design of the vehicle electric system, it is important to have a reliable modeling tool to predict the dynamic behavior of the automotive battery. In this work, a one-dimensional modeling was carried-out to predict the dynamic behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experiment data of the dynamic behaviors of the lead-acid batteries of two different capacities that were mounted on the automobiles manufactured by Hyundai Motor Company. The discharge behaviors were measured with various discharge rates of C/3, C/5, C/10, C/20 and combination. And dynamic behaviors of charge and discharge were measured. The voltage curves from the experiment and simulation were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, and the current density within the electrodes could be predicted as a function of charge and discharge time.

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation (습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조)

  • Kim Moon Hyeon;Choo Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

Modeling Study on a Circulatory Hollow-Fiber Membrane Absorber for $CO_{2}$ Separation (이산화탄소 분리를 위한 순환식 중공사 막흡수기에 관한 모델링 연구)

  • Chun, Myung-Suk;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • For several years lots of attempts have been made to establish the liquid membrane-based techniques for separations of gas mixtures especially containing carbon dioxide. A more effective system to separate $CO_{2}$ from flue gases, a circulatory hollow-fiber membrane absorber(HFMA) consisting of absorption and desorption modules with vacuum mode, has been considered in this study. Gas-liquid mass transfer has been modeled on a membrane module with non-wetted hollow-fibers in the laminar flow regime. The influence of an absorbent flow rate on the separation performance of the circulatory HFMA can be predicted quantitatively by obtaining the $CO_{2}$ concentration profile in a tube side. The system of $CO_{2}/N_{2}$ binary gas mixture has been studied using pure water as an(inert) absorbent. As the absorbent flow rate is increased, the permeation flux(i.e., defined as permeation rate/membrane contact area) also increases. The enhanced selectivity compared to the previous results, on the other hand, shows the decreasing behavior. It has been found obviously that the permeation flux depends on the variations of pressure in gas phase of desorption module. From an accurate comparison with the results of conventional flat sheet membrane module, the advantageous permeability of this circulatory HFMA can be clearly ascertained as expected. Our efforts to the theoretical model will provide the basic analysis on the circulatory HFMA technique for a better design and process.

  • PDF

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

Adsorption Characteristics of Methyl Orange on Ginkgo Shell-Based Activated Carbon (은행 껍질 기반 활성탄의 메틸오렌지 흡착 특성)

  • Lee, Jeong Moon;Lee, Eun Ji;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.636-645
    • /
    • 2022
  • In this study, we investigated the adsorption characteristics of methyl orange (MO), an anionic dye, on ginkgo shell-based activated carbon (AC). For this purpose, ACs (GS-1, GS-2, and GS-4) with different textural properties were prepared using ginkgo shells and potassium hydroxide (KOH), a representative chemical activating agent. The correlation between the textural characteristics of AC prepared and the mixing ratio of KOH was investigated using nitrogen adsorption/desorption isotherms. The MO adsorption equilibrium experiment on the prepared ACs was conducted under different pH (pH 3~11) and temperature (298~318 K) conditions, and the results were investigated by Langmuir, Freundlich, Sips and temperature-dependent Sips equations. The feasibility of the MO adsorption treatment process of the prepared AC was also investigated using the dimensionless Langmuir separation factor. The heterogeneous adsorption properties of MO for the prepared AC examined using the adsorption energy distribution function (AED) were closely related to the system temperature and textural characteristics of AC. The kinetic results of the batch adsorption performed at different temperatures can be satisfactorily explained by the homogeneous surface diffusion model (HSDM), which takes into account the external mass transfer, intraparticle diffusion, and active site adsorption. The relationship between the activation energy value obtained by the Arrhenius plot and the adsorption energy distribution function value was also investigated. In addition, the adsorption process mechanism of MO on the prepared AC was evaluated using Biot number.

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Measurements of Isoprene and Monoterpenes at Mt. Taehwa and Estimation of Their Emissions (경기도 태화산에서 isoprene과 monoterpenes 측정 및 배출량 산정)

  • Kim, Hakyoung;Lee, Meehye;Kim, Saewung;Guenther, Alex.B.;Park, Jungmin;Cho, Gangnam;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.217-226
    • /
    • 2015
  • To investigate the distributions of BVOCs (Biogenic Volatile Organic Compounds) from mountain near mega city and their role in forest atmospheric, BVOCs and their oxidized species were measured at a 41 m tower in Mt. Taehwa during May, June and August 2013. A proton transfer reaction-mass spectrometer (PTR-MS) was used to quantify isoprene and monoterpenes. In conjunction with BVOCs, $O_3$, meteorological parameters, PAR (Photosynthetically Active Radiation) and LAI (Leaf Area Index) were measured. The average concentrations of isoprene and monoterpenes were 0.71 ppbv and 0.17 ppbv, respectively. BVOCs showed higher concentrations in the early summer (June) compared to the late summer (August). Isoprene started increasing at 2 PM and reached the maximum concentration around 5 PM. In contrast, monoterpenes concentrations began to increase 4 PM and stayed high at night. The $O_3$ maximum was generally found at 3 PM and remained high until 5 PM or later, which was concurrent with the enhancement of $O_3$. The concentrations of BVOCs were higher below canopy (18 m) than above canopy, which indicated these species were produced by trees. At night, monoterpenes concentrations were negatively correlated with these of $O_3$ below canopy. Using MEGAN (Model of Emissions of Gases and Aerosols from Nature), the emissions of isoprene and monoterpenes were estimated at 1.1 ton/year and 0.9 ton/year, respectively at Mt. Taehwa.