• Title/Summary/Keyword: Mass rearing

Search Result 110, Processing Time 0.024 seconds

Effects of Dietary Animal Feed on the Growth Performance of Edible Insects (가축사료를 첨가한 먹이원의 급여가 부식성 식용곤충의 생육에 미치는 영향)

  • Song, Myung-Ha;Lee, Heui-Sam;Park, Kwanho
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.563-568
    • /
    • 2018
  • The insect industry is a promising agricultural resource and expected to grow steadily. In Korea, Gryllus bimaculatus and the larvae of Tenebrio molior, Protaetia brevitarsis, and Allomyrina dichotoma were listed as general food ingredients. As interest in these edible insects increases, rearing techniques and nutritious food sources are needed for mass production. In this study, wheat bran, dog feed, and pig feed were investigated for their effects on the larval growth of P. brevitarsis and A. dichotoma. When fermented sawdust with 30% wheat bran was used, the larval survival rate of P. brevitarsis and A. dichotoma (p=0.244341 and p=0.007966, respectively) and growth rate (p=0.001400 and p=0.000051, respectively) were significantly lower than those of the control (fermented sawdust with no supplement). Therefore, fermented sawdust with a high density of wheat bran was inappropriate for both insects. When fed fermented sawdust with 2.5 or 5% of dog and pig feed, the survival rate and growth rate of the larvae were higher than those of the control. Interestingly, the maximum larval weight with 2.5% dog feed was increased by $3.35{\pm}0.10g$ and $32.59{\pm}0.79g$ for P. brevitarsis and A. dichotoma, respectively. In addition, the larval period of both was shorter than that of the control by 40 days or more. Therefore, it is considered that animal feed can be used as a feed source for these edible insects.

Quantification of Reproductive Effort and Microscopic Observation on the Larval Development of Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) (바지락 (Ruditapes philippinarum)의 번식량 측정 및 유생발달에 관한 연구)

  • Lee, Hee-Jung;Kang, Hyun-Sil;Park, Kyung-Il;Mondol, Mostafisur Rahman;Choi, Kwang-Sik
    • The Korean Journal of Malacology
    • /
    • v.28 no.2
    • /
    • pp.145-156
    • /
    • 2012
  • Larval development of the Manila clam Ruditapes philippinarum reared in an indoor tank system was examined in this study using light microscope and scanning electron microscope. To induce spawning and subsequent larval development, clams were collected from the intertidal zone at Gim-nyeong harbor in Jeju Island in August 2011. After 2 days of rearing in the tank, all Manila clams spawned in the midnight. Non-feeding trochophore larvae appeared 7hrsafter fertilization and the first D-shape larvae could be observed at 19 hrs. Twenty one days after fertilization the pediveliger larvae crawling on the bottom of the tank with well-developed foot were observed. Histology indicated that all the clams used in this study were in the ripe stage prior to spawning and the gonad-somatic index (GSI), a ratio of the egg mass to the tissue weight, of the ripe female measured by ELISA was 28.6%. The GSI of female clam declined to 17.3% after the massive spawning in the tank, suggesting that Manila clam discharged 40% of the total eggs during the first spawning event. In conclusion, spawning and subsequent larval development of Manila clam was successfully carried out in this study using an indoor tank system, and the information obtained in the present study could be useful in future Manila clam hatchery development.

Distributional Data and Ecological Characteristics of Parnassius bremeri Bremer in Korea (붉은점모시나비의 국내 분포정보 및 생태적 특성 조사)

  • 고민수;이준석;김철학;김성수;박규택
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • This study was carried out to survey and confirm the occurring sites of Parnassius bremeri in Korea, and to investigate ecological characteristics to develop a mass rearing technique. In the field survey, adults were found in the two previously known sites in Gyungnam Province and another site was newly found in Samcheok, Gangwon Province. Emergence period of adults was from middle of May to middle of June. Oviposition took place on various material, including hostplant, debris, dead leaves, etc. Eggs were laid singly, up to 126.7 eggs per female. The egg-period was 221.3${\pm}$2.3 days, eggs were hatched from 11th to 22nd of January in the natural condition, and started to feed for about 10 days after hatching. Survival rate of the 1st larvae was 67.6%. Developing period of each instar in the insectary (25$^{\circ}C$, 75% RH, 16L:8D) was 11.2 days for the 1st instar, 7.3 days for 2nd, 12.8 days for 3rd, 16.2 days for 4th, and 18.2 days for 5th, and the pupal period was 21.3 days. The average longevity of adults was 26.2 days. Oviposition rate was higher in the natural condition with enough space to fly for 3♀ : 1 ♂ coupled, at least 3 ${\times}$ 3${\times}$4 m-sized room, than in smaller cage. In a comparison of the preference for visiting on sugar source, black sugar and fructose were effective.

Host plants and Biological Characteristics of Illeis koebelei Timberlake (Coleoptera: Coccinellidae: Halyziini) in Gyeonggi-do (노랑무당벌레의 발생기주 및 생물학적 특성)

  • Lee, Young Su;Jang, Myoung Jun;Lee, Jin Gu;Kim, Jun-Ran;Lee, Joon Ho
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.295-301
    • /
    • 2015
  • We investigated mycophagous ladybird, Illeis koebelei from 12 species of plants infected with powdery mildew in Gyeonggi-do, Korea. The pear tree, Pyrus ussuriensis var. macrostipes (Nakai), was most preferred by I. koebelei. This species was found from early July to early November in pear orchards. There was no entomophagous trace in the gut of I. koebelei without powdery mildew spores in a microscope. All stages except egg and pupa are obligate mycophagous, and the feeding potential is ranked as follows: fourth instar, adults, third instar, second instar, and first instar. Feeding amounts of each stage of I. koebelei were 45.6, 144.4, 372.2, 628.1, and $473.7mm^2$ of cucumber powdery mildew per day. Fourth instar larvae showed highest consumption of cucumber powdery mildew. Developmental periods of four larval instars and adults feeding cucumber powdery mildew were 1.2, 2.3, 2.3, 4.6, and 37.7 days, respectively, at $25^{\circ}C$. In this study, we could not determine the feeding potential of I. koebelei against the cucumber powdery mildew; therefore, and further studies are required to elucidate the potential of this species as a biological control agent, e.g., mass rearing, selection of low toxic chemical agents for Integrated Pest Management (IPM), and control techniques against powdery mildew in agro-ecosystems.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

Evaluation of Sprouted Barley as a Nutritive Feed Additive for Protaetia brevitarsis and Its Antibacterial Action against Serratia marcescens (흰점박이꽃무지 사료첨가제로서 새싹보리의 곤충병원성 세균에 대한 항균 효과에 관한 연구)

  • Song, Myung Ha;Kim, Nang-Hee;Park, Kwan-Ho;Kim, Eunsun;Kim, Yongsoon
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2021
  • Interest in edible insects such as Protaetia brevitarsis has increased rapidly, and several insect producers use these insects in industrialized mass production. However, mass rearing of insects can cause insect diseases. Sprouted barley is a valuable source of nutrients and has antioxidant, antimicrobial, anti-inflammatory, and anti-cancer effects. This study was conducted to investigate the effect of sprouted barley as a feed additive for producing healthy P. brevitarsis larvae. P. brevitarsis larvae were fed feeds with or without sprouted barley, and their body weight and larval period wewe checked weekly. To confirm the antibacterial effects of sprouted barley, in vitro bioassays were performed by counting Serratia marcescens colonies, and in vivo bioassays were performed by determining the survival rate and body weights of the S. marcescens-infected larvae. Larvae fed different feeds were analyzed for their nutrient compositions (i.e., such as proximate composition, minerals, amino acids, and heavy metals). Larvae fed 5% and 10% sprouted barley had maximum weight increases of 19.2% and 23.1%, respectively. Both treatment groups had significantly shorter larval periods than those of the control group. Sprouted barley markedly inhibited the growth of entomopathogenic S. marcescens. Furthermore, larvae fed sprouted barley exhibited higher Cu, Zn, and K levels. Seventeen amino acids were present in larvae fed sprouted barley, of which, tyrosine and glutamic acid were predominant. No heavy metals were detected in any of the investigated groups. Therefore, sprouted barley may be a suitable feed additive for producing high-quality P. brevitarsis larvae.

Developments of Water Treatment System by Biological Fluidized Bed for Water Reuse Aquaculture (생물학적 유동층을 이용한 어류양식 순환수의 처리씨스템 개발)

  • LEE Ki-Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.380-391
    • /
    • 1993
  • The experimental study was made to propose the treatment method of wastewater in the high-density fish culture system. The BOD to COD ratios of effluents were almost same to 0.65 in the eel-farm, but were various in the farm rearing together with tilapia etc. A BOD rate curve of the eel-farm effluent could be described mathematically by the equation, $BODu=14.1(1-10^{-0.222t})+30.9(1-10^{-0.035(t-8)})$. Nitrification in Biological Fluidized Bed(BFB) system to treat the fish-farm wastewater could be reduce ammonium level up to $65{\sim}79\%$ when ammonium loading rates were between 0.014 and 0.075g $NH_4/g$ BVS-day. Nitrification efficiency was decreased by organic matters in the wastewater when ammonium loading was low(0.014 g $NH_4/g$ BVS-day). T-N removal ratios were decreased to increase loading in denitrification process, because of low C/N ratio. Based on much higher biological mass concentrations, BFB system takes many advantages of a practical viewpoint, such as stability of treatment efficiency and reduction of necessary site area for the facility, as compared with conventional treatment systems.

  • PDF

Intensive Culture of the Pacific White Shrimp Litopenaeus vannamei, under Limited Water Exchange - II. Indoor Post-Nursery Culture of Juvenile Shrimp - (사육수 비교환 방식에 의한 흰다리새우의 고밀도 사육 - II. 흰다리새우의 실내 중간양성 -)

  • Jang, In-Kwon;Kim, Jong-Sheek;Seo, Hyung-Chul;Cho, Kook-Jin
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Shrimp farming which is entirely conducted in outdoor ponds in the west coast of Korea has been suffered from mass mortality due to viral epizootics. Intensive indoor shrimp culture under limited water exchange can solve these problems of outdoor ponds including viral transmission from environment, pollution due to discharge of rearing water, low productivity and limited culture period. In this study, juvenile L. vannamei (B.W. 0.08-0.09 g) was stocked with $3,000-5,455/m^3$ in density in four raceway tanks (two $12.9\;m^2$, two $18\;m^2$ tanks) and cultured for 42 days with 2.7-3.4% of daily water exchange. Results from four tanks showed FCR of 0.79-1.29, survival of 38.2-48.0%, and yields of $2.49-4.22\;kg/m^3$ which is consistent with 12-20 and 8-14 times higher than those of commercial shrimp hatchery and outdoor pond in Korea, respectively. Concentrations of total ammonia nitrogen in all four tanks were 1.11-1.42 ppm in mean level and did not exceed 6.0 ppm (0.096 ppm of $NH_3$) which is still acceptable levels for shrimp growth. During the culture trial, concentration of $NO_2$-N rapidly increased from stocking, resulting in mean concentration of 18.45-22.07 ppm. It also exceeded 10 ppm over four weeks and maintained at 35-45 ppm for four days in all tanks, accounting for low survival of shrimp due to long-term exposure to high concentration of $NO_2$-N. Nevertheless, the results with survival rate over 38% from raceways which experienced the extreme $NO_2$-N levels suggests that under "biofloc system" white shrimp can acclimate to high $NO_2$-N concentration to some degree.

First report of Telenomus remus Nixon(Scelionidae), an egg parasitoid of Spodoptera frugiperda(J.E. Smith)(Noctuidae) in Korea and its biological characteristics (한국에서 열대거세미나방 알기생벌 Telenomus remus Nixon (가칭: 밤나방검정알벌)[검정알벌과]의 첫 보고 및 생물적 특성 연구)

  • Jum Rae Cho;Bo Yoon Seo;June Yeol Choi;Gwan Seok Lee;Meeja Seo;Jeong Hwan Kim
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.187-198
    • /
    • 2022
  • In this study, Telenomus remus Nixon (Hymenoptera: Scelionidae) was first reported as a natural enemy of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) egg collected from corn fields in Korea, and its biological characteristics was studied. Based on morphological and molecular analysis, the parasitoid emerged from S. frugiperda eggs was identified as T. remus. We found that T. remus can attack the eggs of S. frugiperda, Spodoptera litra and Spodoptera exigua under a laboratory condition. The longevity of T. remus female adult was longer than that of male adult. The egg-to-adult period of T. remus was not affected by the host age and sex. T. remus female adult laid at least 1-3 eggs a day to a maximum of 37 or more eggs, and the most oviposited on the 3rd to 4th day after emergence. The host preference for oviposition of T. remus adult was high in the order of S. litura>S. exigua>S. frugiperda. T. remus preferred to parasitize 1- and 2-day-old host egg rather than 3-day-old host egg. When compared to the sex ratio of T. remus progeny, the rate of female progeny was higher at the initiation time of oviposition, while the proportion of male progeny increased significantly with female adult age, especially after 8-day-old adult. This information may be useful for improving T. remus mass rearing system and developing a biological control program to control S. frugiperda.

ON THE EFFECTS CHLORINITIES UPON GROWTH OF EARLIER LARVAE AND POST-LARVA OF A FRESH WATER PRAWN, MACROBRACHIUM ROSENBERGI(DE MAN) (담수산새우 Macrobrachium rosenbergi (de Man)의 초기유생 및 Post-larva.의 성장에 미치는 염분량에 관하여)

  • KWON Chin Soo;UNO Yutaka;OGASAWARA Yohismitsu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1977
  • The fresh water prawn, Macrobrachium rosenbergi(de Man) is a very common species in Indopacific region, which inhaits both fresh and brackish water in low land area, most of rivers and especially aboundant in the lower reaches which are influenced by sea water. It is one of the largest and commercial species of genus Macrobrachium, which is commonly larger than $18\~21cm$ in body length, from the basis of eye-stalked to the distal of telson. As a part of the researches in order to investigate the possibilities on transplantation and propagation of this species, this work dealt with the problems on the effects of chlorinities upon zoeal larvae and post-larvae 1). metamorphosis rate and optimum chlorinity for metamorphosis to post-larve, 2). tolerance and comparative survival rate on various chlorinties, from fresh water to sea water $(19.38\%_{\circ}\;Cl)$, which reared for six days upon each stage of zoeal larvae, 3). accomodation rate on chlonities which reared for twelve days after transmigration into variant chlorinities of the range from $3.68\%_{\circ}$ Cl to $1.53\%_{\circ}$ Cl in the way of rearing of the range from $3.82\%_{\circ}$ Cl to $11.05\%_{\circ}$ upon each stage of zoea, 4). tolerance on both of fresh and sea water upon zoeal larva and post-larva under the condition of $28^{\circ}C{\pm}1$ in temperature and feeding on Artenia salina nauplii, 5). relationship between various chlorinities and grwth of post-larvae under the condition of $28^{\circ}C$ in tmperature and feeding on meat of clam. Thus these investigations were performed in order to grope for a comfortable method on seedmass production. Up to the present, the study on the effects of chlorinity upon earlier zoeal larvae and post-larvae of Macrobrachium species has been scarcely performed by workers with the exception of Lewis(1961) and Ling (1962,, 1967), even so their works were not so detailed. On the other hand, larvae of several species of this genus were reared at the water which mixed sea water so as to carry out complete metamorphosis to post-larva by workers in order to investigate on earlier 1 arval and earlier post-larval development, such as Macrobrachium lamerrei (Rajyalakshmi, 1961), M. rosenbergi and M. nipponense (Uno and Kwoa, 1969; Kwon and Uno, 1969), M. acanthurs (Choudhury, 1970; Dobkin, 1971), M. carcinus(Choudhury, 1970), M. formosense(Shokita, 1970), M. olfersii (Duggei et al., 1975), M. novaehallandiae (Greenwood et al., 1976), M. japonicum (Kwon, 1974) and M. lar (Shokita, personal communication), and there fore it is regarded that chlorinity is, generally, one of absolute factors to rear zoeal larvae of brackish species of Macrobrachium genus. Synthetic results on this work is summarized as the follwings: 1) Zoeal larvae required different chlorinities to grow according to each stage, and generally, it is regarded that optimum range of living and growing is from $7.63\%_{\circ}Cl\to\;7.63\%_{\circ}Cl$, and while differences of metamorphsis rate, from first zoea to post-larva, is rarely found in this range, and however it occurs apparently in both of situation at $7.63\%_{\circ}Cl$ below and $16.63\%_{\circ}Cl$ above and moreover, metamorphosis rate is delayed somewhat in case of lower chlorinity as compared with high chlorinity in these situations. 2) Accomodation in each chlorinity on the range, from fresh water to sea water, is different according to larval stages and while the best of it is, generally, on the range from $14.24\%_{\circ}Cl$ to $8.28\%_{\circ}Cl$ and favorite chlorinity of zoea have a tendency to remove from high chlorinity to lower chlorinity in order to advance larval age throughout all zoeal stages, setting a conversional stage for eighta zoea stage. 3) Optimum chlorinity of living and growth upon postlarvae is on the range of $4.25\%_{\circ}Cl$ below, and in proportion as approach to fresh water, growth rate is increased. 4) Post-large are able to live better in fresh water in comparison with zoeal larvae, which are only able to live within fifteen hours, and by contraries, post-larvae are merely able to live for one day as compared with ?미 larvar, which are able to live for six days more in sea water $19.38\%_{\circ}Cl\;above$. 5) Also, in case of transmigration into higher and lower chlorinities in the way of rearing in the initial chlorinities $ 3.82\%_{\circ}Cl,\;7.14%_{\circ}Cl\;and\;11.05%_{\circ}Cl$, accoodation rate is a follow: accomodation capacity in ease of removing into higher chlorinities from lower chlorinities is increased in proportion as earlier stages, setting a conversional stage for eighth zoea stage, and by contraries, in case of advanced stages from eighth zoea it is incraesed in proportion as approach to post-larva stage in the case of transmigration into lower chlorinity from higher chlorinity. On the other hand, it is interesting that in case of reciprocal transmigration between two different chlorinitiess, each survival rate is different, and in this case, also, its accomodation in each zoea stage has a tendency to vary according to larval stages as described above, setting a conversional stage for eighth zoea stage. 6) It is likely that expension of radish pigments on body surface is directly proportional to chlorinity during the period of zoea rearing, and therefore it seems like all body surfacts of zoea larvae be radish coloured in case of higher chlorinity. 7) By the differences that each zoeal larvae, postlarvae, juvaniles and adult prawn are required different chlorinity for inhabiting in each, it is regarded that this species migrats from up steam to near the estuary of the river which the prawns inhabits commonly in natural field for spawning and growth migration. 8) It had better maintainning chlorinities according to zoeal stage for a comfortable method on seed-mass production that earlier larva stages than eighth zoea are maintained on the range from $8\%_{\circ}Cl\;to\;12\%_{\circ}Cl$ to rear, and later larva stages than eighth zoea, by contraries, are gradually regula ted-to love chlorininity of the range from $7\%_{\circ}Cl\;to\;4\%_{\circ}Cl$ according to advance for post-larva stage.

  • PDF