• Title/Summary/Keyword: Mass estimation

Search Result 769, Processing Time 0.028 seconds

A Study on the Particles Density Estimation in Seoul Metropolitan (서울시 미세먼지의 밀도 추정에 관한 연구)

  • Kim, Shin-Do;Kim, Chang-Hwan;Hwang, Ui-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The variation of the particle size distribution and density as well as the chemical composition of aerosols is important to evaluate the particles. This study measured and analyzed airborne particles using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer (APS) at the University of Seoul during every season. The highest particle number concentration of airborne particles less than $0.9\;{\mu}m$, occurred in winter, while the highest particle number concentration of airborne particles more than $0.9\;{\mu}m$, occurred in spring. Mass concentration appeared highest at spring. Also, when we compared $\beta$-ray's mass concentration with calculated mass concentration by using the SMPS-APS system during each season, density of the winter is $1.92\;g/cm^3$, spring density is $1.64\;g/cm^3$, fall density is $1.57\;g/cm^3$. We found out that PM10 density was differ every season. However, while the calculated density is whole density for PM10 the density of each diameter was different. In this study the density estimation equation of the QCM cascade impactor measured mass concentration of each diameter.

An Experimental Study on Estimation of Strength in High Strength Concrete Structure Using Simple Adiabatic Curing (단열양생을 이용한 고강도 콘크리트 압축강도 추정에 관한 실험적 연구)

  • Cho Kyu Hyun;Kim Je Sub;Hwang Byung Jun;Gong Min Ho;Back Min Soo;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.450-453
    • /
    • 2004
  • The present study is a basic experiment on the estimation of the compression strength of high strength concrete, aiming at estimating the compression strength of mass test pieces of high strength concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created adiabatic curing tank and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

  • PDF

A study on ultimate bearing capacity of foundations on jointed rock mass (암반 위에 위치한 기초의 지지력 평가에 관한 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.420-429
    • /
    • 2009
  • This study concerns bearing capacity of shallow and deep foundations on jointed rock mass. The main focus of this research lies on getting insight into the applicability of bearing capacity estimation methods developed by other researchers. First, an extensive literature review was performed on previous studies concerning bearing capacity of foundation on jointed rock mass. Second, a parametric study on a number of jointed rock conditions using the finite-element analysis. The results of the analysis were then compared with those computed by the bearing capacity estimation method.

  • PDF

Estimation of a Mass Unbalance Under the Crack on the Rotating Shaft

  • Park, Rai-Wung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.228-234
    • /
    • 2000
  • The aim of the work is to present a new method of estimating the existence of a mass unbalance and mass unbalance under a crack on a rotating shaft. This is an advanced new method for the detection of a mass unbalance and a new way to estimate the position of it under crack influence. As the first step, the shaft is physically modelled with a finite element method and the dynamic mathematical model is derived by using the Hamilton principle; thus, the system is represented by various subsystems. The equation of motion of the shaft with a mass unbalance and a crack are established by adapting the local mass unbalance and the stiffness change. this is a reference system for the given system. Based on a model for transient behavior induced from vabrations measured at the bearings, an elementary Estimator is designed to detect mass unblance on the shaft. Using the Estimator, a bank of the Estimator is established to estimate the estimate the position of the mass unbalance and arranged at a certain location on the shaft. The informations for the given system are the measurements of bearing displacements and velocity.

  • PDF

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.

Air System Modeling for State Estimation of a Diesel Engine with Consideration of Dynamic Characteristics (동적특성을 고려한 디젤엔진 흡배기 시스템의 상태추정 모델)

  • Lee, Joowon;Park, Yeongseop;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.36-45
    • /
    • 2014
  • Model based control methods are widely used to improve the control performance of diesel engine air systems because the control results of the air system significantly affect the emission level and drivability. However, the model based control algorithm requires a lot of unmeasurable states which are hard to be measured in a mass production engine. In this study, an air system model of the diesel engine is proposed to estimate 11 unmeasurable states using only sensors equipped in a mass production engine. In order to improve the estimation performance in the transient condition, dynamic characteristics of the air system are analyzed and implemented as discrete filters. Turbine and compressor efficiency models are also proposed to overcome a limitation of the constant or look-up table based efficiency values. The proposed air system model was validated in steady state and transient conditions by real-time engine experiments. The maximum error of the estimation for 11 physical states was 11.7%.

Flapwise Bending Vibration of Rotating Timpshenko Beams with Concentrated Mass and Mass Moment of Inertia (집중 질량및 관성 모멘트를 갖는 회전하는 티모센코 보의 면외굽힘 진동)

  • 박정훈;유홍희
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.353-360
    • /
    • 1998
  • In this paper, a modeling method for the bending vibration analysis of rotating Timoshenko beams with concentrated mass and mass moment of inertia is presented. The shear and rotary inertia effects become critical for the accurate estimation of the natural frequencies and mode shapes as the slenderness ratio decreases. The natural frequencies obtained by using the Timoshenko beam theory are lower than those by using the Euler beam theory. The critical angular speed, which does not exist only with the concentrated mass, exists with the concentrated mass moment of inertia.

  • PDF

Estimation of Beam Mode Frequencies of Co-axial Cylinders Immersed in Fluid by Equivalent Mass Approach

  • Kim, Tae-Wan;Park, Suhn;Park, Keun-Bae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-13
    • /
    • 2003
  • In this study, an effective method to estimate the fundamental frequencies of co-axial cylinders immersed in fluid is proposed. The proposed method makes use of the equivalent mass or density that is derived from the added mass matrix caused by the fluid-structure interaction (FSI) phenomenon. The equivalent mass is defined from the added mass matrix based on a 2-D potential flow theory. The theory on two co-axial cylinders extended to the case of three cylinders. To prove the validity of the proposed method, the eigenvalue analyses upon coaxial cylinders coupled with fluid gaps are peformed using the equivalent mass. The analyses results upon various fluid gap is conditions reveal that the present method could provide accurate frequencies and be suitable for expecting the fundamental frequencies of fluid coupled cylinders in beam mode vibration.

Studies for Reliability-corrected Cost Estimation Methodology of Launch Vehicle Development (신뢰성 보정된 발사체 개발비용 추정방안 연구)

  • Kim, Hong-Rae;Yoo, Dong-Seo;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.364-374
    • /
    • 2012
  • The purpose of this study is to perform the reliability-corrected development cost estimation of the launch vehicle at the conceptual design phase. In order to estimate the launch vehicle development cost, the estimation method based on the independent variable such as the rocket performance and dry mass has been mainly implemented up to now. This approach has made the approximate cost estimation possible, however, the cost variation according to the reliability requirement could not be reflected. In this paper, the cost estimation methodology that introduces the reliability factor in addition to the performance and mass in the TRANSCOST model is presented in order to improve the limitation of current cost estimation method. The development cost of KSLV(Korea Space Launch Vehicle)-II is estimated on the basis of this newly implemented concept with reliability as an added parameter.

Estimation of Quantitative Source Contribution of VOCs in Seoul Area (서울지역에서의 VOCs 오염원 기여도 추정에 관한 연구)

  • 봉춘근;윤중섭;황인조;김창녕;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.387-396
    • /
    • 2003
  • A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.