• Title/Summary/Keyword: Mass diffusion

Search Result 647, Processing Time 0.032 seconds

Biophysical Feature, Crystallization and X-ray Crystallographic Studies of Toxascaris leonina Galectin

  • Sung, Min-Kyung;Jeong, Mi-Suk;Lee, Woo-Chul;Song, Jeong-Hyun;Kim, Hye-Yeon;Cho, Min-Kyoung;Yu, Hak-Sun;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.227-232
    • /
    • 2012
  • Galectins are generally believed to be potential candidates for use in the development of novel antiinflammatory agents or as selective modulators of the immune response. In particular, galectin-9 exhibits some of the extracellular functions, including cell aggregation, adhesion, chemoattraction, activation, and apoptosis. Tl-galectin (Tl-gal, galectin-9 homologue gene) was isolated from an adult worm of the Toxascaris leonina. The full-length Tl-gal gene, which was incorporated into pET-28a, was overexpressed in E. coli and purified by nickel affinity and gel filtration chromatographies. The purified Tl-gal was crystallized using the hangingdrop vapor-diffusion method. The crystal belonged to the tetragonal space group $P4_1$, with unit-cell parameters of a = b = $75.7\AA$ and c = $248.4\AA$. The crystals were obtained at $20^{\circ}C$ and diffracted to a resolution of $3.0\AA$. The asymmetric unit contained four molecules of Tl-gal, which gave a crystal volume per protein mass (Vm) of $2.8\AA^3Da^{-1}$ and a solvent content of 54.1%.

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Humidification Characterization of water-to-gas Membrane Humidifier for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 water-to-gas 막 가습기의 투과 특성)

  • Chang, Dae-Kwon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.326-334
    • /
    • 2010
  • In this study, characterization and performance of membrane humidifier using membrane distillation was evaluated for moisture of fuel gas in the PEMFC. The data were expressed dew point. The best results show $51.19^{\circ}C$ at $60^{\circ}C$ of water temperature, $54.22^{\circ}C$ at 900 mL/min and $60.03^{\circ}C$ at 100 strands. The mass transfer modelling of membrane humidifier were able to predict humidification of fuel gases for operating PEMFC. When the membrane humidifier was applied to the 100 W stack, it showed stable voltage and power. The volume of membrane humidifier was small however, showed better performance than bubble humidifier.

Purification and Characterization of the Bacteriocin Thuricin Bn1 Produced by Bacillus thuringiensis subsp. kurstaki Bn1 Isolated from a Hazelnut Pest

  • Ugras, Serpil;Sezen, Kazim;Kati, Hatice;Demirbag, Zihni
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.

Removal Characteristics of Fluoride Ions by PSf-Al(OH)3 Beads Immobilized Al(OH)3 with Polysulfone (Polysulfone으로 Al(OH)3를 고정화한 PSf-Al(OH)3 비드에 의한 불소 이온의 제거 특성)

  • Jeon, Jin-Woo;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • In this study, PSf-$Al(OH)_3$ beads were prepared by immobilizating aluminum hydroxide $Al(OH)_3$ with polysulfone (PSf). The removal experiments of the fluoride ions by PSf-$Al(OH)_3$ beads were conducted batchwise and the parameters such as pH, initial fluoride concentration, and coexisting ions were investigated. The maximum removal capacity obtained from Langmuir isotherm was 52.4 mg/g and the optimum pH region of fluoride ions was in the range of 4 to 10. The removal process of fluoride ions by PSf-$Al(OH)_3$ beads was found to be controlled by both external mass transfer at the earlier stage followed by internal diffusion at the later stage. The presence of coexisting anions such as $HCO_3{^-}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $Cl^-$ had a negative effect on removal of fluoride ions by PSf-$Al(OH)_3$ beads.

Differential settlements in foundations under embankment load: Theoretical model and experimental verification

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun;Su, Hui
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.283-303
    • /
    • 2015
  • To research and analyze the differential settlements of foundations specifically, site investigations of existing railways and metro were firstly carried out. Then, the centrifugal test was used to observe differential settlements in different position between foundations on the basis of investigation. The theoretical model was established according to the stress diffusion method and Fourier method to establish an analytical solution of embankment differential settlement between different foundations. Finally, theoretical values and experimental values were analyzed comparatively. The research results show that both in horizontal and vertical directions, evident differential settlement exists in a limited area on both sides of the vertical interface between different foundations. The foundation with larger elastic modulus can transfer more additional stress and cause relatively less settlement. Differential settlement value decreases as the distance to vertical interface decreases. In the vertical direction of foundation, mass differential settlement also exists on both sides of the vertical interface and foundation with larger elastic modulus can transfer more additional stress. With the increase of relative modulus of different foundations, foundation with lower elastic modulus has larger settlement. Meanwhile, differential settlement is more obvious. The main error sources in theoretical and experimental values include: (a) different load form; (b) foundation characteristics differences; (c) modulus conversion; (d) effect of soil internal friction.

Primary Hepatic Lymphoma: MR Imaging and Pathologic Correlation (일차성 간림프종: 자기공명영상과 병리소견의 연관)

  • Kim, Han-Na;Shin, Yu-Ri;Rha, Sung-Eun;Jung, Eun-Sun;Oh, Soon-Nam;Choi, Joon-Il;Jung, Seung-Eun;Lee, Young-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.151-155
    • /
    • 2010
  • Primary hepatic lymphoma is extremely rare, representing less than 1% of all extranodal lymphomas. We report MR imaging features and pathologic correlation of a case of primary hepatic lymphoma. MR images showed a large lobulated mass with gradual contrast enhancement, resembling intrahepatic cholangiocarcinoma. However, both hepatobiliary phase image obtained 20 minutes after injection of hepatocyte specific contrast agent and diffusion-weighted image demonstrated characteristic three layered pattern representing viable lymphoma in the outer layer, tumor necrosis in the middle layer and necrotic hepatic parenchyma in the center.

Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor (연소실 내 동축형 2-유체 분무의 이론적 모델)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • A theoretical study of spray and combustion characteristics due to coaxial twin-fluid injection is conducted to investigate the effects of liquid jet property, droplet size, contact length and liquid jet velocity. Model is properly validated with measurements and shows good agreement. Prediction of jet contact length, droplet size, liquid jet velocity reflects genuine features of coaxial injection in physical and practical aspects. Both the jet contact length and tile droplet size are reduced in a linear manner with an increase of injector diameter. Cross sectional area of liquid intact core is reduced with augmented jet splitting rate, thus the jet is accelerated to maintain the mass continuity and with an assistant of momentum diffusion by burnt gas.

A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing (SiGe에 이온 주입과 열처리에 의한 불순물 분포의 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.377-385
    • /
    • 2018
  • For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.

Chemical Composition and Antimicrobial Activity of Essential Oil Extracted from Eucalyptus citriodora Leaf

  • Insuan, Wimonrut;Chahomchuen, Thippayarat
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.148-157
    • /
    • 2020
  • Eucalyptus oil is a rich source of bioactive compounds with a variety of biological activities and is widely used in traditional medicine. Eucalyptus citriodora is cultivated for the production of essential oils. However, the mode of antibacterial action of essential oils from E. citriodora is not well-known. This study aimed to determine the chemical components, microbial inhibitory effect, and mechanism of action of the essential oil from E. citriodora. The oil was extracted from E. citriodora leaves by hydro-distillation and the chemical components were analyzed using gas chromatography-mass spectrometry. The antibacterial activities of eucalyptus oil against gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus intermedius) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were screened by disc diffusion method and quantitative analysis was conducted by the microdilution method. The mechanism of action of the extracted essential oil was observed using SEM and analyzed by SDS-PAGE. The major components of E. citriodora oil were citronellal (60.55 ± 0.07%), followed by dl-isopulegol (10.57 ± 0.02%) and citronellol (9.04 ± 0.03%). The antibacterial screening indicated that E. citriodora oil exhibited prominent activity against all tested strains. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against B. subtilis were 0.5% and 1.0%, respectively. The MIC and MBC concentrations against S. aureus, S. intermedius, E. coli, and P. aeruginosa were 1% and 2%, respectively. As observed by SEM, the antibacterial mechanism of E. citriodora oil involved cell wall damage; SDS-PAGE revealed decrease in protein bands compared to untreated bacteria. Thus, E. citriodora oil showed significant antimicrobial properties and caused cellular damage.