• Title/Summary/Keyword: Mass Transport

Search Result 803, Processing Time 0.029 seconds

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Development of Simple and Rapid Radioactivity Analysis for Thorium Series in the Products Containing Naturally Occurring Radioactive Materials (NORM) (천연방사성물질(NORM)을 함유한 가공제품 내 토륨계열 방사능 평가를 위한 간단/신속 분석법 개발)

  • Yoo, Jaeryong;Park, Seyoung;Yoon, Seokwon;Ha, Wi-Ho;Lee, Jaekook;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • Background: It is necessary to analyze radioactivity of naturally occurring radioactive materials (NORM) in products to ensure radiological safety required by Natural Radiation Safety Management Act. The pretreatments for the existing analysis methods require high technology and time. Such destructive pretreatments including grinding and dissolution of samples make impossible to reuse products. We developed a rapid and simple procedure of radioactivity analysis for thorium series in the products containing NORM. Materials and Methods: The developed method requires non-destructive or minimized pretreatment. Radioactivity of the product without pretreatment is initially measured using gamma spectroscopy and then the measured radioactivity is adjusted by considering material composition, mass density, and geometrical shape of the product. The radioactivity adjustment can be made using scaling factors, which is derived by radiation transport Monte Carlo simulation. Necklace, bracelet, male health care product, and tile for health mat were selected as representative products for this study. The products are commonly used by the public and directly contacted with human body and thus resulting in high radiation exposure to the user. Results and Discussion: The scaling factors were derived using MCNPX code and the values ranged from 0.31 to 0.47. If radioactivity of the products is measured without pretreatment, the thorium series may be overestimated by up to 2.8 times. If scaling factors are applied, the difference in radioactivity estimates are reduced to 3-24%. Conclusion : The developed procedure in this study can be used for other products with various materials and shapes and thus ensuring radiological safety.

Temperature Dependence of Oxygen Diffusivity in the PVC Film on Gold Electrode Using Steady-State Rotating Disk Electrode Technique and Modulated Electrohydrodynamic Impedance Technique (정상상태 회전원판전극(RDE) 방법과 유체역학적 요동에 의한 전기화학적(EHD) 임피던스방법을 이용한 금전극표면에 형성된 PVC 피막내 산소확산계수의 온도의존성에 대한 연구)

  • Yeon Jei-Won;Pyun Su-Il;Lee Woo-Jin;Choi In-Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • In the present we.k, temperature dependence of oxygen diffusivity in the polyvinyl chloride (PVC) film $D_f$ formed on gold electrode was investigated using steady-state rotating disk electrode (RDE) technique and modulated electrohydrodynamic (EHD) impedance technique. Both the diffusion rate defined as the ratio of oxygen diffusivity in the PVC film to the film thickness $D_f/\delta_f$ and the time constant $\delta_f^2/D_f$ for oxygen diffusion through the PVC film were obtained from plot of the limiting current versus disk rotation speed and from filing the EHD impedance spectra experimentally measured to those theoretically calculated on the basis of the diffusion equation for mass transport through the non-conductive and porous film, respectively. By combining measured $D_f/\delta_f$ with $\delta_f^2/D_f$, we determined $\delta_f\;and\;D_f$ at room temperature separately. As temperature increased, it appeared that the $D_f$ value measured for the PVC film-covered gold RDE was enhanced more rapidly than that $D_s$ value in the solution measured for the PVC film-free gold RDE. This means that the pores glowing with increasing temperature act as effective diffusion paths within the film. The present in-situ steady-state and modulated EHD measurements prove to be effective for determining $\delta_f\;and\;D_f$, separately and at the same time the porosity of the PVC film at temperatures below glass temperature $T_g$ of the film.

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.

Characterization and annealing effect of tantalum oxide thin film by thermal chemical (열CVD방법으로 증착시킨 탄탈륨 산화박막의 특성평가와 열처리 효과)

  • Nam, Gap-Jin;Park, Sang-Gyu;Lee, Yeong-Baek;Hong, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.42-54
    • /
    • 1995
  • $Ta_2O_5$ thin film IS a promising material for the high dielectrics of ULSI DRAM. In this study, $Ta_2O_5$ thin film was grown on p-type( 100) Si wafer by thermal metal organic chemical vapo deposition ( MCCVD) method and the effect of operating varialbles including substrate temperature( $T_s$), bubbler temperature( $T_ \sigma$), reactor pressure( P ) was investigated in detail. $Ta_2O_5$ thin film were analyzed by SEM, XRD, XPS, FT-IR, AES, TEM and AFM. In addition, the effect of various anneal methods was examined and compared. Anneal methods were furnace annealing( FA) and rapid thermal annealing( RTA) in $N_{2}$ or $O_{2}$ ambients. Growth rate was evidently classified into two different regimes. : (1) surface reaction rate-limited reglme in the range of $T_s$=300 ~ $400 ^{\circ}C$ and (2: mass transport-limited regime in the range of $T_s$=400 ~ $450^{\circ}C$.It was found that the effective activation energies were 18.46kcal/mol and 1.9kcal/mol, respectively. As the bubbler temperature increases, the growth rate became maximum at $T_ \sigma$=$140^{\circ}C$. With increasing pressure, the growth rate became maximum at P=3torr but the refractive index which is close to the bulk value of 2.1 was obtained in the range of 0.1 ~ 1 torr. Good step coverage of 85. 71% was obtained at $T_s$=$400 ^{\circ}C$ and sticking coefficient was 0.06 by comparison with Monte Carlo simulation result. From the results of AES, FT-IR and E M , the degree of SiO, formation at the interface between Si and TazO, was larger in the order of FA-$O_{2}$ > RTA-$O_{2}$, FA-$N_{2}$ > RTA-$N_{2}$. However, the $N_{2}$ ambient annealing resulted in more severe Weficiency in the $Ta_2O_5$ thin film than the TEX>$O_{2}$ ambient.

  • PDF

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

CIRCULATION AND WATER MASSES IN THE CONTINE NTAL SHELF BREAK REGION OF THE EAST CHINA SEA (동지나해 대륙붕 연변의 해수 유동과 수괴)

  • Lim Gi Bong;Fujimoto Minoru
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1972
  • Studies on the circulation and water masses in the continental shelf break region of the East China Sea are Summerized as follows : 1. The main stream of the Kuroshio flowing north-east near $29^{\circ}N\;Lat\;127^{\circ}E$ tong of the East China Sea in summer is narrow in width. Moving toward east, it becomes twice as wide in Tokora Strait, Japan. 2. In the main stream area of the Kuroshio, the surface Waters in the Upper layer (0-250m) are influenced by the coastal waters of China, and the counter current submerges under the surface water. Therefore, the mixing waters are found in its intermediate layer. 3. Water mass between Amami Island and the continental shelf of the East China Sea consists of main stream water, counter current water, gyration water and mixed water with coastal waters. 4. The maximum velocity of current in this waters was 139cm/sec. The volume transport was estimated approximately as $24.2\;\times\;10^6m^3/sec$. It was less than $33\;\times\;10^6m^3/sec$ in the region between Okinawa and continental shelf of the East China Sea. 5. Surface waters east of $29^{\circ}N\;Lat\;128^{\circ}E$ Long flows toward Amami Island, Okinawa Island, and Hachi Ju San Island, while those west of the region flow toward the Korea-strait, Cheju Island, coastal waters of Kyusyu, and the Pacific Ocean through Tokora Strait. The velocity of the current was estimated approximately as $0.3\~0.5$ miles per hour. 6. The bottom waters in the continental shelf break region flow toward the Korea Strait, Cheju Island and the coastal water of Kyusyu, while that of the continental shelf flows toward the Yellow Sea, 7, The characteristics of the Kuroshio water is changed remarkably by the mixing with the coastal water of China.

  • PDF

Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile (마젤란 분지의 백악기 심해저 하도 퇴적계의 퇴적상 및 진화)

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.385-400
    • /
    • 2004
  • The Lago Sofia Conglomerate encased in the 2km thick hemipelagic mudstones and thinbedded turbidites of the Cretaceous Cerro Toro Formation, southern Chile, is a deposit of a gigantic submarine channel developed along a foredeep trough. It is hundreds of meters thick kilometers wide, and extends for more than 120km from north to south, representing one of the largest ancient submarine channels in the world. The channel deposits consist of four major facies, including stratified conglomerates (Facies A), massive or graded conglomerates (Facies B), normally graded conglomerates with intraformational megaclasts (Facies C), and thick-bedded massive sandstones (Facies D). Conglomerates of Facies A and B show laterally inclined stratification, foreset stratification, and hollow-fill structures, reminiscent of terrestrial fluvial deposits and are suggestive of highly competent gravelly turbidity currents. Facies C conglomerates are interpreted as deposits of composite or multiphase debris flows associated with preceding hyperconcentrated flows. Facies D sandstones indicate rapidly dissipating, sand-rich turbidity currents. The Lago Sofia Conglomerate occurs as isolated channel-fill bodies in the northern part of the study area, generally less than 100m thick, composed mainly of Facies C conglomerates and intercalated between much thicker fine-grained deposits. Paleocurrent data indicate sediment transport to the east and southeast. They are interpreted to represent tributaries of a larger submarine channel system, which joined to form a trunk channel to the south. The conglomerate in the southern part is more than 300 m thick, composed of subequal proportions of Facies A, B, and C conglomerates, and overlain by hundreds of m-thick turbidite sandstones (Facies D) with scarce intervening fine-grained deposits. It is interpreted as vertically stacked and interconnected channel bodies formed by a trunk channel confined along the axis of the foredeep trough. The channel bodies in the southern part are classified into 5 architectural elements on the basis of large-scale bed geometry and sedimentary facies: (1) stacked sheets, indicative of bedload deposition by turbidity currents and typical of broad gravel bars in terrestrial gravelly braided rivers, (2) laterally-inclined strata, suggestive of lateral accretion with respect to paleocurrent direction and related to spiral flows in curved channel segments around bars, (3) foreset strata, interpreted as the deposits of targe gravel dunes that have migrated downstream under quasi-steady turbidity currents, (4) hollow fills, which are filling thalwegs, minor channels, and local scours, and (5) mass-flow deposits of Facies C. The stacked sheets, laterally inclined strata, and hollow fills are laterally transitional to one another, reflecting juxtaposed geomorphic units of deep-sea channel systems. It is noticeable that the channel bodies in the southern part are of feet stacked toward the east, indicating eastward migration of the channel thalwegs. The laterally inclined strata also dip dominantly to the east. These features suggest that the trunk channel of the Lago Sofia submarine channel system gradually migrated eastward. The eastward channel migration is Interpreted to be due to tectonic forcing imposed by the subduction of an oceanic plate beneath the Andean Cordillera just to the west of the Lago Sofia submarine channel.

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사)

  • Kim, Ji Hyun;Kang, Nyeon Keon;Yi, Bo Yeon;Park, Yong Joon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.146-162
    • /
    • 2017
  • Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.

The Characteristics of Hydrodynamic Dispersion in a Horizontally Heterogeneous Fractured Rock Through Single Well Injection Withdrawal Tracer Tests (수평적으로 불균질한 단열암반층에서 단공주입양수 추적자시험에 의한 수리분산특성)

  • Kang, Dong-Hwan;Chung, Sang-Yong;Kim, Byung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.53-60
    • /
    • 2006
  • Single well injection withdrawal tracer tests with bromide were carried out at two wells developed in a horizontally heterogeneous fractured rock. The hydraulic conductivity of TW-1 well was 5 times larger than TW-2 well, and the average linear velocity of TW-2 well was 1.8 times faster than TW-1 well. The difference of hydrodynamic dispersions of two wells in the fractured rock was studied with the analysis of concentration breakthrough curves and cumulative mass recovery curves of bromide with withdrawal time, and the estimation of average travel distance, pore velocity, longitudinal dispersivity and longitudinal dispersion coefficient. The average travel distances of bromide were estimated to be 3.00 m in TW-1 well and 5.62 m in TW-2 well. The average pore velocities for the injection/withdrawal phase were estimated to be $4.31\;{\times}\;10^{-4}\;m/sec$ in TW-1 well and $8.08\;{\times}\;10^{-4}\;m/sec$ in TW-2 well. Average travel distance and pore velocity were higher in TW-2 well because of small effective porosity. Longitudinal dispersivities were estimated to be 28.73 cm in TW-1 well and 18.49 cm in TW-2 well, and bromide transport was 1.55 times faster in TW-1 well. Longitudinal dispersion coefficients were estimated to be $5.14\;{\times}\;10^{-6}\;m^2/sec$ in TW-1 well and $6.06\;{\times}\;10^{-6}\;m^2/sec$ in TW-2 well, and diffusion area was 1.18 times larger in TW-2 well.