Browse > Article
http://dx.doi.org/10.7582/GGE.2017.20.3.146

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea  

Kim, Ji Hyun (Department of Petroleum Resources Technology, Korea University of Science and Technology (UST))
Kang, Nyeon Keon (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Yi, Bo Yeon (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Park, Yong Joon (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Yoo, Dong Geun (Department of Petroleum Resources Technology, Korea University of Science and Technology (UST))
Publication Information
Geophysics and Geophysical Exploration / v.20, no.3, 2017 , pp. 146-162 More about this Journal
Abstract
Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.
Keywords
northwestern Ulleung Basin; submarine canyon; slope failure; sea level fluctuations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Almeida, N. M. D., Vital, H., and Gomes, M. P., 2015, Morphology of submarine canyons along the continental margin of the Potiguar Basin, NE Brazil, Mar. Pet. Geol., 68, 307-324.   DOI
2 Chough, S. K., and Barg, E., 1987, Tectonic history of Ulleung basin marign, East Sea (Sea of Japan), Geology, 15, 45-48.   DOI
3 Chough, S. K., Lee, H. J., and Yoon, S. H., 1992, Submarine slides in the eastern continental margin, Korea, Marine Geotechnology, 10, 71-82.
4 Chough, S. K., Lee, H. J., and Yoon, S. H., 2000, Marine geology of Korean seas, 2nd Ed., Elsevier.
5 Chough, S. K., Lee, S. H., Kim, J. W., Park, S. C., Yoo, D. G., Han, H. S., Woon, H. S., Oh, S. B., Kim, Y. B., and Back, G. G., 1997, Chirp (2-7 kHz) echo characters in the Ulleung Basin, Geosci. J., 1, 143-153.   DOI
6 Covault, J. A., Fildani, A., Romans, B. W., and McHargue, T., 2011, the natural range of submarine canyon and channel longitudinal profiles, Geosphere, 7, 313-332.   DOI
7 Cukur, D., Kim, S. P., Kong, G. S., Bahk, J. J., Horozal, S., Um, I. K., Lee, G. S., Chang, T. S., Ha, H. J., Volker, D., and Kim, J. K., 2016, Geophysical evidence and inferred triggering factors of submarine landslides on the western continental margin of the Ulleung Basin, East Sea, Geo-Marine Letters, 36, 1432-1157.   DOI
8 Dantec, N. L., Hogarth, L. J., Driscoll, N. W., Babcock, J. M., Barnhardt, W. A., and Schwab, W. C., 2010, Tectonic controls on nearshore sediment accumulation and submarine canyon morphology offshore La Jolla, Southern California, Mar. Geol., 268, 115-128.   DOI
9 Ediger, V., Okyar, M., and Ergin, M., 1993, Seismic stratigraphy of the fault-controlled submarine canyon/valley system on the shelf and upper slope of Anamur Bay, Northeastern Mediterranean Sea, Mar. Geol., 115, 129-142.   DOI
10 Bull, S., Cartwright, J., and Huuse, M., 2009, A review of kinematic indicators from mass-transport complexes using 3D seismic data, Mar. Pet. Geol., 26, 1132-1151.   DOI
11 Elliott, G. M., Shannon, P. M., Haughton, P. D., Praeg, D., and O'Reilly, B., 2006, Mid-to Late Cenozoic canyon development on the eastern margin of the Rockall Trough, offshore Ireland, Mar. Geol., 229, 113-132.   DOI
12 Farre, J. A., McGregor, B. A., Ryan, W. B. F., and Robb, J. M., 1983, Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution, In Stanley, D. J., and Moore, G. T., Ed., The shelfbreak: Critical Interface on Continental Margins, SEPM Special Publication, 33, 25-39.
13 Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., and Zhang, J., 2011, The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes, Mar. Pet. Geol., 28, 1690-1702.   DOI
14 Hampton, M. A., Lee., H. J., and Locat, J., 1996, Submarine landslides. Rev. Geophys., 34, 33-59.   DOI
15 Harris, P. T., and Whiteway, T., 2011, Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Mar. Geol., 285, 69-86.   DOI
16 He, Y., Xie, X., Kneller, B. C., Wang, Z., and Li, X., 2013, Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea, Mar. Pet. Geol., 41, 264-276.   DOI
17 Shepard, F. P., 1981, Submarine canyons: multiple causes and long-time persistence, AAPG Bulletin, 65, 1062-1077.
18 Ratzov, G., Sosson, M., Collot, J-Y., and Migeon, S., 2012, Late Quaternary geomorphologic evolution of submarine canyons as a marker of active deformation on convergent margins: the example of the South Colombian margin, Mar. Geol., 315, 77-97.
19 Restrepo-Correa, I. C., and Ojeda, G. Y., 2010, Geologic controls on the morphology of La Aguja submarine canyon, J. South Am. Earth Sci., 29, 861-870.   DOI
20 Rise, L., Boe, R., Riis, F., Bellec, V. K., Laberg, J. S., Eidvin, T., Elvenes, S., and Thorsnes, T., 2013, The Lofoten-Vesteralen continental margin, North Norway: Canyons and massmovement activity, Mar. Pet. Geol., 45, 134-149.   DOI
21 Straub, K. M., and Mohrig, D., 2009, Constructional canyons built by sheet-like turbidity currents: observations from offshore Brunei Darussalam, J. Sediment. Res., 79, 24-39.   DOI
22 Ingle, J. C., 1992, Subsidence of the Japan Sea: stratigraphic evidence from ODP sites and onshore sections, Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, 1190-1218.
23 He, Y., Zhong, G., Wang, L., and Kuang, Z., 2014, Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea, Mar. Pet. Geol., 57, 546-560.   DOI
24 Iacono, C. L., Sulli, A., Agate, M., Presti, V. L., Pepe, F., and Catalano, R., 2011, Submarine canyon morphologies in the Gulf of Palermo (Southern Tyrrhenian Sea) and possible implications for geo-hazard, Mar. Geophys. Res., 32, 127-138.   DOI
25 Iacono, C. L., Sulli, A., and Agate, M., 2014, Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin, Deep Sea Research Part II: Topical Studies in Oceanography, 104, 93-105.   DOI
26 Jobe, Z. R., Lowe, D. R., and Uchytil, S. J., 2011, Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea, Mar. Pet. Geol., 28, 843-860.   DOI
27 Jolivet, L., and Tamaki, K., 1992, Neogene kinematics in the Japan Sea region and volcanic activity of the northeast Japan Arc. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, 1311-1331.
28 Korea Institute of Geoscience and Mineral Resources (KIGAM), 2015, Studies on gas-hydrate resource assessment and reservoir characterization, GP2012-026-2015(4), 418pp.
29 Lee, G. H., and Kim, B., 2002, Infill history of the Ulleung Basin, East Sea (Sea of Japan) and implications on source rocks and hydrocarbons, Mar. Pet. Geol., 19, 829-845.   DOI
30 Tamaki, K., Suyehiro, K., Allan, J., Ingle, J. C. Jr., and Pisciotto, K. A., 1992, Tectonic synthesis and implications of Japan Sea ODP Drilling, Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, 1333-1348.
31 Twichell, D. C., and Roberts, D. G., 1982, Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore canyons, Geology, 10, 408-410.   DOI
32 Vail, P. R., 1987, Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: Seismic stratigraphy interpretation procedure, in Bally, A. W., Ed., Atlas of Seismic Stratigraphy, AAPG studies in Geology, 27, 1-10.
33 Yi, S. H., Bahk, J. J., Jia, H., and Yoo, D. G., 2012, Pliocene-Pleistocene boundary determination in hemipelagic sediment from the Ulleung Basin (East Sea, offshore Korea) inferred from terrigenous and marine palynofloras, Rev. Palaeobot. Palynol., 181, 54-63.   DOI
34 Rao, H. Y., Subrahmanyam, C., Rastogi, A., and Deka, B., 2002, Slope failures along the western continental margin of India: a consequence of gas-hydrate dissociation, rapid sedimentation rate, and seismic activity?, Geo-Marine Letters, 22, 162-169.   DOI
35 Lee, S. H., Bahk, J. J., Kim, H. J., Kim, G. Y., Kim, S. P., Jeong, S. W., and Park, S. S., 2014, Contrasting development of the latest Quaternary slope failures and mass-transport deposits in the Ulleung Basin, East Sea (Japan Sea), in Krastel S., Behrmann J. H., Volker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., and Harbitz, C. B., Ed., Submarine mass movements and their consequences-6th International Symposium, Springer, 37, 403-412.
36 Lee, G. H., and Suk, B. C., 1998, Latest Neogene-Quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan), Mar. Geol., 146, 205-224.   DOI
37 Lee, H. J., Chough, S. K., and Yoon, S. H., 1996, Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan Sea), Sediment. Geol., 104, 39-51.   DOI
38 Lee, H. J., Chough, S. K., Chun, S. S., and Han, S. J., 1991, Sediment failure on the Korea Plateau slope, East Sea (Sea of Japan), Mar. Geol., 97, 363-377.   DOI
39 Lee, S. H., Chough, S. K., Back, G. G., Kim, Y. B., and Sung, B. S., 1999, Gradual downslope change in high-resolution acoustic characters and geometry of large-scale submarine debris lobes in Ulleung Basin, East Sea (Sea of Japan), Korea, Geo-Marine Letters, 19, 254-261.   DOI
40 Li, X., Liu, L., Li, J., Gao, S., Zhou, Q., and Su, T., 2015, Mass movements in small canyons in the northeast of Baiyun deepwater area, north of the south China Sea, Acta Oceanologica Sinica, 34, 35-42.
41 Mayall, M., Jones, E., and Casey, M., 2006, Turbidite channel reservoirs-Key elements in facies prediction and effective development, Mar. Pet. Geol., 23, 821-841.   DOI
42 Paull, C. K., Buelow, W. J., Ussler, W., and Borowski, W. S., 1996, Increased continental margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments, Geology, 24, 143-146.   DOI
43 Mitchum, Jr. R. M., Vail, P R., and Sangree, J. B., 1977, Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences, in Payton, C. E., Ed., Seismic Stratigraphy Applications to Hydrocarbon Exploration, AAPG Memoir, 26, 117-133.
44 Mountjoy, J. J., Barnes, P. M., and Pettinga, J. R., 2009, Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand, Mar. Geol., 260, 45-68.   DOI
45 Park, Y. J., Kang, N. K., Yi, B. Y., and Yoo, D. G., 2015, Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea, Geophys. and Geophys. Explor., 18, 39-53 (in Korean with English abstract).   DOI
46 Popescu, I., Lericolais, G., Panin, N., Normand, A., Dinu, C., and Drezen, E. L., 2004, The Danube submarine canyon (Black Sea): morphology and sedimentary processes, Mar. Geol., 206, 249-265.   DOI
47 Posamentier, H. W., and Kolla, V., 2003, Seismic geomorphology and stratigraphy of depositional elements in deep-water settings, J. Sediment. Res., 73, 367-388.   DOI
48 Posamentier, H. W., and Vail, P. R., 1988, Eustatic controls on clastic deposition II-Sequence and systems tract models, in Wilgus, C. K., Hastings, B. S., Posamentier, H., Van Wagoner, J. C., Ross, C. A., and Kendall, C. G. St.C. Ed., Sea-Level Changes-An Integrated Approach, SEPM Special Publication, 42, 109-124.
49 Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., Karson, J. A., Murray, A. B., Wolinsky, M. A., Gerber, T. P., Mullenbach, B. L., Spinelli, G. A., Fulthorpe, C. S., O'Grady, D. B., Parker, G., Driscoll, N. W., Burger, R. L., Paola, C., Orange, D. L., Field, M. E., Friedrichs, C. T., and Fedele, J. J., 2007, Seascape evolution on clastic continental shelves and slopes, in C. A., Nittrouer, J. A., Austin, M. E., Field, J. H., Kravitz, J. P. M., Syvitski, and P. L., Wiberg, Ed., Continental margin sedimentation, Special Publication of the International Association of Sedimentologists, 37, 339-380.
50 Pratson, L. F., and Coakley, B. J., 1996, A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows, Geol. Soc. Am. Bull., 108, 225-234.   DOI
51 Yoo, D. G., Kang, D. H., Koo, N. H., Kim, W. S., Kim, G. Y., Kim, B. Y., Chung, S. H., Kim, Y. J., Lee, H. Y., Park, K. P., Lee, G. H., and Park, S. C., 2008, Geophysical evidence for the occurrence of gas hydrate in the Ulleung Basin, East Sea, J. Geol. Soc. Korea, 44, 645-655 (in Korean with English abstract).
52 Yoo, D. G., Kang, N. K., Yi, B. Y., Kim, G. Y., Ryu, B. J., Lee, K. S., Lee, G. H., and Riedel, M., 2013, Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea, Mar. Pet. Geol., 47, 236-247.   DOI
53 Yoon, S. H., and Chough, S. K., 1993, Evolution of Neogene sedimentary basins in the eastern continental margin of Korea, Korean J. Petro. Geol., 1, 15-27.
54 Yoon, S. H., and Chough, S. K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan), Geol. Soc. Am. Bull., 107, 83-97.   DOI
55 Pratson, L. F., Ryan, W. B., Mountain, G. S., and Twichell, D. C., 1994, Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope, Geol. Soc. Am. Bull., 106, 395-412.   DOI
56 Yoon, S. H., Park, S. J., and Chough, S. K., 1997, Western boundary fault systems of Ulleung Back-arc Basin: further evidence of pull-apart opening, Geosci. J., 1, 75-88.   DOI
57 Yoon, S. H., Sohn, Y. K., and Chough, S. K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan), Mar. Geol., 352, 70-88.   DOI
58 Zhou, W., Wang, Y., Gao, X., Zhu, W., Xu, Q., Xu, S., Cao, J., and Wu, J., 2015, Architecture, evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Pearl River Mouth Basin, northern South China Sea, Mar. Pet. Geol., 67, 389-407.   DOI