DOI QR코드

DOI QR Code

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea

동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사

  • Kim, Ji Hyun (Department of Petroleum Resources Technology, Korea University of Science and Technology (UST)) ;
  • Kang, Nyeon Keon (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yi, Bo Yeon (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Yong Joon (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yoo, Dong Geun (Department of Petroleum Resources Technology, Korea University of Science and Technology (UST))
  • 김지현 (과학기술연합대학원대학교 석유자원공학과) ;
  • 강년건 (한국지질자원연구원 석유해저연구본부) ;
  • 이보연 (한국지질자원연구원 석유해저연구본부) ;
  • 박용준 (한국지질자원연구원 석유해저연구본부) ;
  • 유동근 (과학기술연합대학원대학교 석유자원공학과)
  • Received : 2017.06.13
  • Accepted : 2017.06.27
  • Published : 2017.08.31

Abstract

Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.

동해 울릉분지 북서해역에 위치한 해저협곡의 층서 및 발달사를 연구하기 위해 다중빔 및 탄성파 자료를 분석하였다. 탄성파 자료 해석에 의하면 연구지역의 퇴적층은 침식 부정합면에 의해 분리되는 4개의 층서단위로 구분된다. 대륙사면에 발달한 퇴적층은 사면붕락을 포함하는 평행층리 음향상이 우세한 반면, 분지로 향하면서 평행층리 음향상과 캐오틱 음향상을 보이는 퇴적층이 분포한다. 전반적으로 사면에서는 얇은 층후를 보이며, 사면기저부와 분지 평원에서는 두꺼운 층후로 발달한다. 탄성파 특징과 분포에 의하면 각 층서단위의 퇴적은 해저협곡의 발달사와 잘 대비된다. 음향기반 암 상부에 위치하는 층서단위 1은 사면에서는 얇은 층후로 발달하며 분지로 향하면서 층후는 점차 증가한다. 층서단위 2는 다른 층서단위에 비해 사면에서 두꺼운 층후를 보이며 단층과 관련된 사면붕락이 발생한다. 사면붕락에 의해 유발된 질량류 퇴적체는 사면기저부에 주로 퇴적되며, 이 퇴적체는 심해 선상지로 해석된다. 퇴적물의 퇴적보다는 침식작용이 우세하여 협곡의 폭과 깊이는 증가한다. 층서단위 3은 해저협곡 주변부의 사면에서 얇은 층후를 보이며, 분지로 향하면서 퇴적두께는 점차 증가한다. 층서단위 4는 사면에서 슬라이드/슬럼프를 포함하는 얇은 층후를 보이며, 사면기저부에는 두꺼운 층후로 퇴적되는 심해 선상지가 발달한다. 해저협곡 주변부에서의 사면붕락과 우세한 침식작용에 의해 해저협곡의 폭과 깊이는 증가한다. 결과적으로 연구지역의 해저협곡과 연계된 층서단위의 형성은 사면붕락에 의한 퇴적물 공급량, 광역적인 구조운동, 해수면 변동에 의해 크게 조절되었다.

Keywords

References

  1. Almeida, N. M. D., Vital, H., and Gomes, M. P., 2015, Morphology of submarine canyons along the continental margin of the Potiguar Basin, NE Brazil, Mar. Pet. Geol., 68, 307-324. https://doi.org/10.1016/j.marpetgeo.2015.08.035
  2. Bull, S., Cartwright, J., and Huuse, M., 2009, A review of kinematic indicators from mass-transport complexes using 3D seismic data, Mar. Pet. Geol., 26, 1132-1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
  3. Chough, S. K., and Barg, E., 1987, Tectonic history of Ulleung basin marign, East Sea (Sea of Japan), Geology, 15, 45-48. https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  4. Chough, S. K., Lee, H. J., and Yoon, S. H., 1992, Submarine slides in the eastern continental margin, Korea, Marine Geotechnology, 10, 71-82.
  5. Chough, S. K., Lee, H. J., and Yoon, S. H., 2000, Marine geology of Korean seas, 2nd Ed., Elsevier.
  6. Chough, S. K., Lee, S. H., Kim, J. W., Park, S. C., Yoo, D. G., Han, H. S., Woon, H. S., Oh, S. B., Kim, Y. B., and Back, G. G., 1997, Chirp (2-7 kHz) echo characters in the Ulleung Basin, Geosci. J., 1, 143-153. https://doi.org/10.1007/BF02910206
  7. Covault, J. A., Fildani, A., Romans, B. W., and McHargue, T., 2011, the natural range of submarine canyon and channel longitudinal profiles, Geosphere, 7, 313-332. https://doi.org/10.1130/GES00610.1
  8. Cukur, D., Kim, S. P., Kong, G. S., Bahk, J. J., Horozal, S., Um, I. K., Lee, G. S., Chang, T. S., Ha, H. J., Volker, D., and Kim, J. K., 2016, Geophysical evidence and inferred triggering factors of submarine landslides on the western continental margin of the Ulleung Basin, East Sea, Geo-Marine Letters, 36, 1432-1157. https://doi.org/10.1007/s00367-016-0463-5
  9. Dantec, N. L., Hogarth, L. J., Driscoll, N. W., Babcock, J. M., Barnhardt, W. A., and Schwab, W. C., 2010, Tectonic controls on nearshore sediment accumulation and submarine canyon morphology offshore La Jolla, Southern California, Mar. Geol., 268, 115-128. https://doi.org/10.1016/j.margeo.2009.10.026
  10. Ediger, V., Okyar, M., and Ergin, M., 1993, Seismic stratigraphy of the fault-controlled submarine canyon/valley system on the shelf and upper slope of Anamur Bay, Northeastern Mediterranean Sea, Mar. Geol., 115, 129-142. https://doi.org/10.1016/0025-3227(93)90078-A
  11. Elliott, G. M., Shannon, P. M., Haughton, P. D., Praeg, D., and O'Reilly, B., 2006, Mid-to Late Cenozoic canyon development on the eastern margin of the Rockall Trough, offshore Ireland, Mar. Geol., 229, 113-132. https://doi.org/10.1016/j.margeo.2006.03.008
  12. Farre, J. A., McGregor, B. A., Ryan, W. B. F., and Robb, J. M., 1983, Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution, In Stanley, D. J., and Moore, G. T., Ed., The shelfbreak: Critical Interface on Continental Margins, SEPM Special Publication, 33, 25-39.
  13. Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., and Zhang, J., 2011, The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes, Mar. Pet. Geol., 28, 1690-1702. https://doi.org/10.1016/j.marpetgeo.2011.06.005
  14. Hampton, M. A., Lee., H. J., and Locat, J., 1996, Submarine landslides. Rev. Geophys., 34, 33-59. https://doi.org/10.1029/95RG03287
  15. Harris, P. T., and Whiteway, T., 2011, Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Mar. Geol., 285, 69-86. https://doi.org/10.1016/j.margeo.2011.05.008
  16. He, Y., Xie, X., Kneller, B. C., Wang, Z., and Li, X., 2013, Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea, Mar. Pet. Geol., 41, 264-276. https://doi.org/10.1016/j.marpetgeo.2012.03.002
  17. He, Y., Zhong, G., Wang, L., and Kuang, Z., 2014, Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea, Mar. Pet. Geol., 57, 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003
  18. Iacono, C. L., Sulli, A., Agate, M., Presti, V. L., Pepe, F., and Catalano, R., 2011, Submarine canyon morphologies in the Gulf of Palermo (Southern Tyrrhenian Sea) and possible implications for geo-hazard, Mar. Geophys. Res., 32, 127-138. https://doi.org/10.1007/s11001-011-9118-0
  19. Iacono, C. L., Sulli, A., and Agate, M., 2014, Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin, Deep Sea Research Part II: Topical Studies in Oceanography, 104, 93-105. https://doi.org/10.1016/j.dsr2.2013.06.018
  20. Ingle, J. C., 1992, Subsidence of the Japan Sea: stratigraphic evidence from ODP sites and onshore sections, Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, 1190-1218.
  21. Jobe, Z. R., Lowe, D. R., and Uchytil, S. J., 2011, Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea, Mar. Pet. Geol., 28, 843-860. https://doi.org/10.1016/j.marpetgeo.2010.07.012
  22. Jolivet, L., and Tamaki, K., 1992, Neogene kinematics in the Japan Sea region and volcanic activity of the northeast Japan Arc. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, 1311-1331.
  23. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2015, Studies on gas-hydrate resource assessment and reservoir characterization, GP2012-026-2015(4), 418pp.
  24. Lee, G. H., and Kim, B., 2002, Infill history of the Ulleung Basin, East Sea (Sea of Japan) and implications on source rocks and hydrocarbons, Mar. Pet. Geol., 19, 829-845. https://doi.org/10.1016/S0264-8172(02)00106-X
  25. Lee, G. H., and Suk, B. C., 1998, Latest Neogene-Quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan), Mar. Geol., 146, 205-224. https://doi.org/10.1016/S0025-3227(97)00123-0
  26. Lee, H. J., Chough, S. K., and Yoon, S. H., 1996, Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan Sea), Sediment. Geol., 104, 39-51. https://doi.org/10.1016/0037-0738(95)00119-0
  27. Lee, H. J., Chough, S. K., Chun, S. S., and Han, S. J., 1991, Sediment failure on the Korea Plateau slope, East Sea (Sea of Japan), Mar. Geol., 97, 363-377. https://doi.org/10.1016/0025-3227(91)90126-O
  28. Lee, S. H., Bahk, J. J., Kim, H. J., Kim, G. Y., Kim, S. P., Jeong, S. W., and Park, S. S., 2014, Contrasting development of the latest Quaternary slope failures and mass-transport deposits in the Ulleung Basin, East Sea (Japan Sea), in Krastel S., Behrmann J. H., Volker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., and Harbitz, C. B., Ed., Submarine mass movements and their consequences-6th International Symposium, Springer, 37, 403-412.
  29. Lee, S. H., Chough, S. K., Back, G. G., Kim, Y. B., and Sung, B. S., 1999, Gradual downslope change in high-resolution acoustic characters and geometry of large-scale submarine debris lobes in Ulleung Basin, East Sea (Sea of Japan), Korea, Geo-Marine Letters, 19, 254-261. https://doi.org/10.1007/s003670050116
  30. Li, X., Liu, L., Li, J., Gao, S., Zhou, Q., and Su, T., 2015, Mass movements in small canyons in the northeast of Baiyun deepwater area, north of the south China Sea, Acta Oceanologica Sinica, 34, 35-42.
  31. Mayall, M., Jones, E., and Casey, M., 2006, Turbidite channel reservoirs-Key elements in facies prediction and effective development, Mar. Pet. Geol., 23, 821-841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
  32. Mitchum, Jr. R. M., Vail, P R., and Sangree, J. B., 1977, Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences, in Payton, C. E., Ed., Seismic Stratigraphy Applications to Hydrocarbon Exploration, AAPG Memoir, 26, 117-133.
  33. Mountjoy, J. J., Barnes, P. M., and Pettinga, J. R., 2009, Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand, Mar. Geol., 260, 45-68. https://doi.org/10.1016/j.margeo.2009.01.006
  34. Park, Y. J., Kang, N. K., Yi, B. Y., and Yoo, D. G., 2015, Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea, Geophys. and Geophys. Explor., 18, 39-53 (in Korean with English abstract). https://doi.org/10.7582/GGE.2015.18.2.039
  35. Paull, C. K., Buelow, W. J., Ussler, W., and Borowski, W. S., 1996, Increased continental margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments, Geology, 24, 143-146. https://doi.org/10.1130/0091-7613(1996)024<0143:ICMSFD>2.3.CO;2
  36. Popescu, I., Lericolais, G., Panin, N., Normand, A., Dinu, C., and Drezen, E. L., 2004, The Danube submarine canyon (Black Sea): morphology and sedimentary processes, Mar. Geol., 206, 249-265. https://doi.org/10.1016/j.margeo.2004.03.003
  37. Posamentier, H. W., and Kolla, V., 2003, Seismic geomorphology and stratigraphy of depositional elements in deep-water settings, J. Sediment. Res., 73, 367-388. https://doi.org/10.1306/111302730367
  38. Posamentier, H. W., and Vail, P. R., 1988, Eustatic controls on clastic deposition II-Sequence and systems tract models, in Wilgus, C. K., Hastings, B. S., Posamentier, H., Van Wagoner, J. C., Ross, C. A., and Kendall, C. G. St.C. Ed., Sea-Level Changes-An Integrated Approach, SEPM Special Publication, 42, 109-124.
  39. Pratson, L. F., and Coakley, B. J., 1996, A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows, Geol. Soc. Am. Bull., 108, 225-234. https://doi.org/10.1130/0016-7606(1996)108<0225:AMFTHE>2.3.CO;2
  40. Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., Karson, J. A., Murray, A. B., Wolinsky, M. A., Gerber, T. P., Mullenbach, B. L., Spinelli, G. A., Fulthorpe, C. S., O'Grady, D. B., Parker, G., Driscoll, N. W., Burger, R. L., Paola, C., Orange, D. L., Field, M. E., Friedrichs, C. T., and Fedele, J. J., 2007, Seascape evolution on clastic continental shelves and slopes, in C. A., Nittrouer, J. A., Austin, M. E., Field, J. H., Kravitz, J. P. M., Syvitski, and P. L., Wiberg, Ed., Continental margin sedimentation, Special Publication of the International Association of Sedimentologists, 37, 339-380.
  41. Pratson, L. F., Ryan, W. B., Mountain, G. S., and Twichell, D. C., 1994, Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope, Geol. Soc. Am. Bull., 106, 395-412. https://doi.org/10.1130/0016-7606(1994)106<0395:SCIBDE>2.3.CO;2
  42. Rao, H. Y., Subrahmanyam, C., Rastogi, A., and Deka, B., 2002, Slope failures along the western continental margin of India: a consequence of gas-hydrate dissociation, rapid sedimentation rate, and seismic activity?, Geo-Marine Letters, 22, 162-169. https://doi.org/10.1007/s00367-002-0107-9
  43. Ratzov, G., Sosson, M., Collot, J-Y., and Migeon, S., 2012, Late Quaternary geomorphologic evolution of submarine canyons as a marker of active deformation on convergent margins: the example of the South Colombian margin, Mar. Geol., 315, 77-97.
  44. Restrepo-Correa, I. C., and Ojeda, G. Y., 2010, Geologic controls on the morphology of La Aguja submarine canyon, J. South Am. Earth Sci., 29, 861-870. https://doi.org/10.1016/j.jsames.2010.07.001
  45. Rise, L., Boe, R., Riis, F., Bellec, V. K., Laberg, J. S., Eidvin, T., Elvenes, S., and Thorsnes, T., 2013, The Lofoten-Vesteralen continental margin, North Norway: Canyons and massmovement activity, Mar. Pet. Geol., 45, 134-149. https://doi.org/10.1016/j.marpetgeo.2013.04.021
  46. Shepard, F. P., 1981, Submarine canyons: multiple causes and long-time persistence, AAPG Bulletin, 65, 1062-1077.
  47. Straub, K. M., and Mohrig, D., 2009, Constructional canyons built by sheet-like turbidity currents: observations from offshore Brunei Darussalam, J. Sediment. Res., 79, 24-39. https://doi.org/10.2110/jsr.2009.006
  48. Tamaki, K., Suyehiro, K., Allan, J., Ingle, J. C. Jr., and Pisciotto, K. A., 1992, Tectonic synthesis and implications of Japan Sea ODP Drilling, Proceedings of the Ocean Drilling Program, Scientific Results, 127/128, 1333-1348.
  49. Twichell, D. C., and Roberts, D. G., 1982, Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore canyons, Geology, 10, 408-410. https://doi.org/10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2
  50. Vail, P. R., 1987, Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: Seismic stratigraphy interpretation procedure, in Bally, A. W., Ed., Atlas of Seismic Stratigraphy, AAPG studies in Geology, 27, 1-10.
  51. Yi, S. H., Bahk, J. J., Jia, H., and Yoo, D. G., 2012, Pliocene-Pleistocene boundary determination in hemipelagic sediment from the Ulleung Basin (East Sea, offshore Korea) inferred from terrigenous and marine palynofloras, Rev. Palaeobot. Palynol., 181, 54-63. https://doi.org/10.1016/j.revpalbo.2012.05.002
  52. Yoo, D. G., Kang, D. H., Koo, N. H., Kim, W. S., Kim, G. Y., Kim, B. Y., Chung, S. H., Kim, Y. J., Lee, H. Y., Park, K. P., Lee, G. H., and Park, S. C., 2008, Geophysical evidence for the occurrence of gas hydrate in the Ulleung Basin, East Sea, J. Geol. Soc. Korea, 44, 645-655 (in Korean with English abstract).
  53. Yoo, D. G., Kang, N. K., Yi, B. Y., Kim, G. Y., Ryu, B. J., Lee, K. S., Lee, G. H., and Riedel, M., 2013, Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea, Mar. Pet. Geol., 47, 236-247. https://doi.org/10.1016/j.marpetgeo.2013.07.001
  54. Yoon, S. H., and Chough, S. K., 1993, Evolution of Neogene sedimentary basins in the eastern continental margin of Korea, Korean J. Petro. Geol., 1, 15-27.
  55. Yoon, S. H., and Chough, S. K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan), Geol. Soc. Am. Bull., 107, 83-97. https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  56. Yoon, S. H., Park, S. J., and Chough, S. K., 1997, Western boundary fault systems of Ulleung Back-arc Basin: further evidence of pull-apart opening, Geosci. J., 1, 75-88. https://doi.org/10.1007/BF02910479
  57. Yoon, S. H., Sohn, Y. K., and Chough, S. K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan), Mar. Geol., 352, 70-88. https://doi.org/10.1016/j.margeo.2014.03.004
  58. Zhou, W., Wang, Y., Gao, X., Zhu, W., Xu, Q., Xu, S., Cao, J., and Wu, J., 2015, Architecture, evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Pearl River Mouth Basin, northern South China Sea, Mar. Pet. Geol., 67, 389-407. https://doi.org/10.1016/j.marpetgeo.2015.05.015