• Title/Summary/Keyword: Mass Moment of Inertia

Search Result 129, Processing Time 0.024 seconds

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

Eigenvalue Sensitivity of Rigid Body Mode for Vehic1e Powertrain System (차량 파워트레인계의 강체고유진동수 민감도)

  • 원광민;강구태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.609-615
    • /
    • 2001
  • In this paper, the eigenvalue sensitivity of vehicle powertrain was investigated by analytic method. The powertrain system was considered as a rigid body with multiple engine mounts, and the engine mounts were supposed as three linear springs in three orthogonal directions. The design parameters for the sensitivity analysis were engine mount properties (positions, stiffness, and orientations) and powertrain properties (mass, second moment of inertia, and center of gravity). Firstly, an effective form of eigenvalue problem for the powertrain system was introduced. Then, the analytic sensitivity of eigenvalue was derived using the equation. Lastly, the derived sensitivity equation was applied to a real powertrain system to provide its correctness and applicability.

  • PDF

A Sliding Mode Controller Using Neural Network for Underwater Robot Manipulator (해저작업 로봇 매니퓰레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어기)

  • Lee, Min-Ho;Choi, Hyung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.305-312
    • /
    • 2000
  • This paper presents a new control scheme using a sliding mode controller with a multilayer neural network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network using the error back propagation loaming algorithm acts as a compensator of the conventional sliding mode controller to improve the control performance when the initial assumptions of uncertainty bounds are not valid. Computer simulation results show that the proposed control scheme gives an effective path way to cope with the unexpected large uncertainties in the underwater robot manipulator.

  • PDF

Dynamic Analysis of a Reciprocating Compression Mechanism Considering Hydrodynamic Forces

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-853
    • /
    • 2003
  • In this paper, a dynamic analysis of the reciprocating compression mechanism of a small refrigeration compressor is performed. In the problem formulation of the mechanism dynamics, the viscous frictional force between the piston and the cylinder wall is considered in order to determine the coupled dynamic behaviors of the piston and the crankshaft. Simultaneous solutions are obtained for the equations of motion of the reciprocating mechanism and the time-dependent Reynolds equations for the lubricating film between the piston and the cylinder wall and for the oil films on the journal bearings. The hydrodynamic forces of the journal bearings are calculated by using a finite bearing model along with the Gumbel boundary condition. A Newton-Raphson procedure is employed in solving the nonlinear equations for the piston and crankshaft. The developed computer program can be used to calculate the complete trajectories of the piston and the crankshaft as functions of the crank angle under compressor-running conditions. The results explored the effects of the radial clearance of the piston, oil viscosity, and mass and mass moment of inertia of the piston and connecting rod on the stability of the compression mechanism.

Structural Analysis and Optimum Design of a De-coupled Vertical Micro-Gyroscope (비연성 수직형 마이크로 자이로스코프의 구조해석 및 최적설계)

  • Park, Sung-Kyoon;Jeong, Hee-Moon;Kim, Myung-Hoon;Kim, Hyung-Tae;Ha, Sung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1840-1848
    • /
    • 2003
  • This paper presents the structural analysis and optimum design of a vertical micro-gyroscope with decoupled 2 degrees of freedom (DOF), driven by electrostatic force. Simplified beam models were presented to derive the structural stiffness of the driving spring of the U shape and the sensing spring of I shape. A finite element analysis (FEA) was performed to validate each derivation. A total mass and a polar mass moment of inertia were also obtained and used in calculating the resonance frequency at each mode of the 2 DOF. The resonance frequencies of the total system were calculated using the proposed models and it has been found that they were in excellent agreement with those of the FEA. Finally, the developed analysis program was then linked to an optimum design module, and an optimum design of the micro-gyroscope was successfully performed.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers

  • Boonyapinyo, Virote;Aksorn, Adul;Lukkunaprasit, Panitan
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The suppression of aerodynamic response of long-span suspension bridges during erection and after completion by using single TMD and multi TMD is presented in this paper. An advanced finite-element-based aerodynamic model that can be used to analyze both flutter instability and buffeting response in the time domain is also proposed. The frequency-dependent flutter derivatives are transferred into a time-dependent rational function, through which the coupling effects of three-dimensional aerodynamic motions under gusty winds can be accurately considered. The modal damping of a structure-TMD system is analyzed by the state-space approach. The numerical examples are performed on the Akashi Kaikyo Bridge with a main span of 1990 m. The bridge is idealized by a three-dimensional finite-element model consisting of 681 nodes. The results show that when the wind velocity is low, about 20 m/s, the multi TMD type 1 (the vertical and horizontal TMD with 1% mass ratio in each direction together with the torsional TMD with ratio of 1% mass moment of inertia) can significantly reduce the buffeting response in vertical, horizontal and torsional directions by 8.6-13%. When the wind velocity increases to 40 m/s, the control efficiency of a multi TMD in reducing the torsional buffeting response increases greatly to 28%. However, its control efficiency in the vertical and horizontal directions reduces. The results also indicate that the critical wind velocity for flutter instability during erection is significantly lower than that of the completed bridge. By pylon-to-midspan configuration, the minimum critical wind velocity of 57.70 m/s occurs at stage of 85% deck completion.

Mode Localization in Multispan Beams with Massive and Stiff Couplers on Supports (지점 위에 질량과 강성이 큰 연결기를 갖는 다경간 보의 모드편재)

  • Dong-Ok Kim;Sun-Kyu Park;In-Won Lee
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1166-1171
    • /
    • 1998
  • The influences of the coupler consisting of stiffness and mass between neighboring two spans on mode localization are studied theoretically, and the results are confirmed by numerical examples. The mass of the coupler makes a structure sensitive to mode localization especially in higher modes while the stiffness does in all modes. A new type of delocalization phenomenon is observed for the first time in some modes for which mode localization does not occur or is very weak although structural disturbances are severe. A spring-mass system consisting of two substructures and a coupler connecting them is considered in the part of analytical study. As example structures for numerical analysis. simply supported continuous two-span beams with a coupler having a rotational stiffness and a mass moment of inertia on the mid support are considered.

  • PDF