• Title/Summary/Keyword: Mass Flow

Search Result 3,820, Processing Time 0.03 seconds

A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature (유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구)

  • Kim, Kwang-Il;Yoo, Won-Yuel;Lee, Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • Kim, H.D.;Lee, J.H.;Woo, S.H.;Choi, B.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.329-334
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Navier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy. A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are known, we can predict the critical mass flow with good accuracy.

  • PDF

Quantifying the Variation of Mass Flow Rate generated by Pressure Fluctuation (압력섭동에 의한 유량변동 측정 정량화)

  • Khil, Tae-Ock;Kim, Dong-Jun;Cho, Seong-Ho;Ahn, Kyu-Bok;Han, Yeoung-Min;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.152-156
    • /
    • 2007
  • It is very important to understand about mass flow rate variations of propellants generated by pressure fluctuation in the combustion chamber. Therefore, we have studied quantifying the variation of mass flow rate generated by pressure fluctuation. The flow velocity in orifice is acquired through theoretical approach after measuring the pressure in orifice and the flow area in orifice is measured by film thickness measuring device. Our results agreed with it in the very small error range comparing our results with velocity and mass flow rate in steady state. Thus, our result based on theoretical approach will help about measuring mass flow rate in non-steady state.

  • PDF

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Dialysis in double-pass cross-flow rectangular membrane modules with external recycle for improved performance

  • Yeh, Ho-Ming
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.75-89
    • /
    • 2011
  • The predicting equations for mass transfer rate in cross-flow rectangular dialyzers with double flow and recycle, have been derived by mass balances. The recycling operation has two conflicting effects. One is the desirable effect of the increase in fluid velocity, resulting in an increased mass transfer coefficient. The other is the undesirable effect of the reduction in concentration difference due to remixing, resulting in decreased mass-transfer driving force. In contrast a single-pass device without recycling, considerable improvement in mass transfer is achieved if the cross-flow rectangular dialyzer of same size is operated with double pass and external recycling. It is concluded that recycle can enhance mass transfer, especially for larger reflux ratio.

Residence Time Distributions of Liquid pbase Flow and Mass Transfers in the Trickle Bed Reactor (점적상 반응기에서 액상흐름의 체류시간 분포 및 물질전달)

  • Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.19-31
    • /
    • 1986
  • The residence time distribution of liquid flow in a 4.0cm diameter column packed with porous $Al_2O_3$ spheres of 0.37cm diameter were measured with pulse injections of a tracer under cocurrent trickling flow conditions. The mean residence time of liquid flow and liquid hold-up calculated by the transient curve of tracer were unaffected by gas flow rates under experimental ranges of liquid flow rates from 2.4 to $4.5(kg/m^2\;sec)$ and gas flow rates from 0 to $0.13(kg/m^2\;sec)$. The axial dispersion coefficient of liquid stream and apparent diffusivity of tracer in a micropore of solid particle were estimated from the response curve of tracer. The calculated Peclet No. were increased in ranges of 68-to 82 with a increasing of liquid mass velocity, and the external effective contacting efficiency between liquid and solid which can be expressed. by $(D_i)_{app}/D_i$ varied in ranges of 0.54 to 0.68 depending on the liquid flow rates. The gas to liquid(water) volumetric mass transfer coefficient were determined from desorption experiments with oxygen at $25^{\circ}C$ and 1 atm. The measured mass transfer coefficients were increased with liquid flow rates and the effect of gas flow rates on the mass transfer coefficient was insignificant.

  • PDF

Flow Characteristics of Mass Flow Amplifier with Various Geometrical Configurations (질량유량 증폭기 형상변화에 따른 유동 특성 연구)

  • Lee, Jeong-Min;Kang, Hyun-Su;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.36-42
    • /
    • 2016
  • Mass flow amplifier, which is an aerodynamic device, makes air flow increased by ejecting small amount of compressed air with $Coand{\breve{a}}$ effect. In this study, the flow characteristics of a mass flow amplifier were studied with various flow conditions and geometrical configurations. In order to improve the performance of mass flow amplifier, various values of clearance, diffuser angle and the aspect ratio of induced flow inlet to outlet were considered as design parameter. Furthermore, four different pressure conditions of compressed air were also considered. Numerical study was performed using the commercial CFD code, ANSYS CFX 14.5 with shear stress transport(SST) turbulent model. The results of pressure and velocity distributions were graphically depicted with different geometrical configurations and operating conditions.

Investigation on the selection of capillary tube for the alternative refrigerant R-407C (대체냉매 R-407C의 모세관 선정에 관한 연구)

  • 김용환;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 1998
  • In this paper, experimental investigation of capillary tube performance for R-407C is performed. The experimental setup is made of real vapor-compression refrigerating system. In this study, mass flow rate is measured for capillary tubes of various diameter and length as inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rates of the numerical model are less than by 14% compared with the measured mass flow rates. It is found that mass flow rate and length for R-407c are less than those of R-22 under the same condition. Also based on this experimental study and the numerical model, a set of capillary tube selection charts for R-407C is constructed.

  • PDF

A Study of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량흐름 제어기의 센서 튜브에서 열전달현상에 관한 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2003
  • In this paper, the heat transfer phenomena in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC, the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations of flow rate, generated heat by heating wire, sensor location and tube thickness were investigated to find the optimized condition. Based on this study, static and dynamic characteristics of sensor can be used for mass flow controller.

  • PDF

Effect of the Flow Rate of Coolant on the Absorption Peformance of a Vertical Absorber (수직 액막형 흡수기의 흡수성능 변화에 미치는 냉각수 유량의 영향)

  • Kim Jung-Kuk;Cho Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.410-417
    • /
    • 2006
  • The present study predicted the effect of the flow rate of coolant on the absorption performance of a vertical falling film type absorber Heat and mass transfer peformances were numerically investigated. The exit temperatures of solution and coolant were decreased as the flow rate of the coolant was increased at the film Reynolds number of 100. The absorption mass flux was increased and then decreased as the distance from the inlet of the absorber was increased. The distance showing the maximum absorption mass flux was ranged from 0.3 to 0.5m. The heat flux and the absorption mass flux were increased and then slowly decreased as the flow rate of the coolant was increased. The maximum values were obtained at the flow rate of coolant of 2.0L/min.