• Title/Summary/Keyword: Mass Concrete

Search Result 880, Processing Time 0.023 seconds

The Mechanical Properties of High Strength Concrete in Massive Structures

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • High strength concrete is being used increasingly in mass structure projects. The purpose of this study is to investigate the influence of temperature during mixing, placing and curing on the strength development, hydration products and pore structures of high strength concrete in mass structures. The experiments were conducted with two different model walls, viz.: 1.5 m and 0.3 m under typical summer and winter weather conditions. The final part of this study deal with the clarification of the relationship between the long-term strength loss and the microstructure of the high strength concrete at high temperatures. Test results indicated that high elevated temperatures in mass concrete structures significantly accelerate the strength development of concrete at the early ages, while the long-term strength development is decreased. The long-term strength loss is caused by the decomposition of ettringite and increased the total porosity and amount of small pores.

An Experimental Study on the Effect of the Early Age Curing Condition on Mass Concrete (초기재령하의 양생조건이 매스콘크리트 온도관리에 미치는 영향 연구)

  • Kim, Kwang-Don;Kim, Chun-Ho;Lee, Choong-Yong;Hwang, Min-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.685-688
    • /
    • 2006
  • As the concrete structure being large-sized and/or high-strengthened, the control of the hydration and curing temperature is made much account. This study, analysing the concrete temperature history from cylindric specimen and mock-up structures, investigates the effect of the early age curing condition and the optimum method of curing temperature control on mass concrete.

  • PDF

Investigation on the Applicability for Method of Setting Time Difference by Super Retarding Agent for Reducing Hydration Heat of Transfer Girder Mass Concrete (전이보 매스콘크리트의 수화열저감을 위한 초지연제 응결시간차 공법의 적용가능성에 대한 검토)

  • Yoon Seob;Hwang Yin Seong;Baik Byung Hoon;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.128-131
    • /
    • 2004
  • This paper is to investigate the mock up test results of mass concrete for transfer girder using setting time difference with super retarding agent(SRA) to reduce hydration heat. According to test results, the temperature history of plain concrete without placing lift had a steep rising curvature, and plain concrete had a big temperature difference between surface and middle section of mass concrete, which may result in occurrence of temperature crack. However, considering placing method B, because setting time of middle section concrete was retarded with an increase in SRA contents, higher hydration heat temperature was observed at surface section concrete compared with that at middle section concrete at early age, which can lower the possibility of hydration heat crack. In case of placing method C, although peak temperature of hydration heat was much lower, at early age, high crack occurrence possibility of the hydration heat attributable to the big temperature difference between middle section and bottom section of concrete was expected at bottom section concrete. Therefore, the structure above the ground like transfer girder is not applicable to consider the placing method C.

  • PDF

Tunnel lining load with consideration of the rheological properties of rock mass and concrete

  • Lukic, Dragan C.;Zlatanovic, Elefterija M.;Jokanovic, Igor M.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Rheological processes in the rock mass for the stress-strain analysis are quite important when considering the construction of underground structures in soft rock masses, particularly in case of construction in several stages. In the analysis, it can be assumed that the reinforced concrete structure is slightly deformable in relation to the rock mass, and the rheological stress redistribution happens at the expense of the elements of rock mass. The basic elements of rheological models for certain types of rock mass and analysis of these models are presented in the first part of this paper. The second part is dedicated to the analysis of rheological processes in marl rock mass and the influence of these processes on the reinforced-concrete tunnel structure.

Analytical Study on Thermal Cracking Control of Mass Concrete by Vertical Pipe Cooling Method (연직파이프쿨링 공법에 의한 매스콘크리트 온도균열 제어에 관한 해석적 연구)

  • Seo, Tae-Seok;Cho, Yun-Gu;Lee, Kewn-Chu;Lim, Chang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • In this study, the vertical pipe cooling method was developed to propose the pipe cooling method suited for the vertically long mass concrete structures. FEM (finite element method) analysis was carried out to investigate the validity of the vertical pipe cooling method, and the temperature, the behavior of tensile stress of concrete and the crack index were investigated. In result, it was confirmed that the vertical pipe cooling method was effective in the thermal cracking control of mass concrete member.

A Study on the Heat Transfer Analysis and Thermal Stress Analysis of Mass Concrete Structure by Finite Element Method (유한요소법을 이용한 매스콘크리트구조물의 수화열 및 온도응력 해석에 관한 연구)

  • 강석화;이용호;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.137-148
    • /
    • 1995
  • In this study, a program for evaluation of heat transfer and thermal stress of mass concrete is developed and verified by 2-experiments (internally and externally restricted). Furthermore, the result of the program is compared with those of ADINA-T and ADINA. As a result of the comparison, the proposed method produces comparable results with those from the popular programs (ADIIVA-T and ADINA) and shows the usefulness of the developed program for the evaluation of thermal stresses of mass concrete in both internally and externally restricted structures.

Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference (수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석)

  • Han, Seung-Baek;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.249-252
    • /
    • 2008
  • In recent large-scale structures, as mass concrete type structure is frequently applied to the building, temperature crack due to hydration heat needs to be considered. Since a volume change is internally or externally restricted in a mold after placing concrete, temperature crack of mass concrete takes place. By this reason, the reduction method to control this crack is required. In this study, low heat mixture and hydration heat difference is used to execute the analysis of hydration heat, considering the changes of heat transfer coefficient according to curing conditions and block placement of mass concrete. For the analytical modelling, original portland cement and concrete of low heat mixture are placed in the upper and lower payer, respectively. A convection boundary condition is fixed because mass concrete of block placement is characterized by the difference of mold form and curing condition. Through the analysis results considering the changes of low heat mixture, block placement, and heat transfer coefficient, we check out the temperature and stress distribution and analyze the temperature crack reduction effect.

  • PDF

Determination of Thermal Cracking Index of Internal Restricted Mass Concrete Using a Numerical Analysis (수치분석을 통한 내부구속 매스콘크리트의 온도균열지수 결정)

  • Seo, Ki-Young;Kim, Hee-Sung;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2007
  • The service life of concrete structure is to a great extent influenced by crack developed at early ages of concrete material. Especially, hydration heat is a main cause of thermal cracking at mass concrete structures. The thermal cracking of massive structure is analyzed of the thermal cracking index which was presented Concrete Standard Specifications. The thesis analyzed the thermal cracking index which considered various variable (cement type, height of casting, curing condition, concrete mixing temperature, the unit cement content) at internal restricted mass concrete. The analysis result is denoted increase and decrease rate of thermal cracking index whenever the variables change. The results is helped to understand thermal cracking every time structures is designed and constructed. And I think that it is useful economic and stable design of mass concrete structures.

Fabrication, characterization, simulation and experimental studies of the ordinary concrete reinforced with micro and nano lead oxide particles against gamma radiation

  • Mokhtari, K.;Kheradmand Saadi, M.;Ahmadpanahi, H.;Jahanfarnia, Gh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3051-3057
    • /
    • 2021
  • The concrete is considered as an important radiation shielding material employed widely in nuclear reactors, particle accelerators, laboratory hot cells and other different radiation sources. The present research is dedicated to the shielding properties study of the ordinary concrete reinforced with different weight fractions of lead oxide micro/nano particles. Lead oxide particles were fabricated by chemical synthesis method and their properties including the average size, morphological structure, functional groups and thermal properties were characterized by XRD, FESEM-EDS, FTIR and TGA analysis. The gamma ray mass attenuation coefficient of concrete composites has been calculated and measured by means of the Monte Carlo simulation and experimental methods. The simulation process was based on the use of MCNP Monte Carlo code where the mass attenuation coefficient (μ/ρ) has been calculated as a function of different particle sizes and filler weight fractions. The simulation results showed that the employment of the lead oxide filler particles enhances the mass attenuation coefficient of the ordinary concrete, drastically. On the other hand, there are approximately no differences between micro and nano sized particles. The mass attenuation coefficient was increased by increasing the weight fraction of nanoparticles. However, a semi-saturation effect was observed at concentrations more than 10 wt%. The experimental process was based on the fabrication of concrete slabs filled by different weight fractions of nano lead oxide particles. The mass attenuation coefficients of these slabs were determined at different gamma ray energies using 22Na, 137Cs and 60Co sources and NaI (Tl) scintillation detector. The experimental results showed that the HVL parameter of the ordinary concrete reinforced with 5 wt% of nano PbO particles was reduced by 64% at 511 keV and 48% at 1332 keV. Reasonable agreement was obtained between simulation and experimental results and showed that the employment of nano PbO particles is more efficient at low gamma energies up to 1Mev. The proposed concrete is less toxic and could be prepared in block form instead of toxic lead blocks.

Field Application of Mass Concrete Using Setting Time Difference of Super Retarding Agent for Reduction of Hydration Heat (초지연제의 응결시간차를 이용한 매스 콘크리트의 수화열 저감을 위한 현장 적용)

  • 전충근;심보길;손성운;신동안;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, field application of mass concrete using setting time difference of super retarding agent is reported to reduce hydration heat of concrete placed at newly constructed apartment house in Busan. Horizontal placing lift is applied. According to test results. slump and air content meets the requirement of target values. For compressive strength, it exceeds the nominal strength ordered by the costumer. Compressive strength of concrete cured in place is achieved more than the values of nominal strength at l4days. For temperature history, maximum temperature of center at top section shows 58.5$^{\circ}C$, and at bottom section, 62.6$^{\circ}C$. According to naked eye's investigation, no hydration heat crack is observed at the surface of concrete.

  • PDF