Tire wear and defect are important factors for safe driving condition. These defects are generally inspected by some specialized experts or very expensive equipments such as stereo depth camera and depth gauge. In this paper, we propose tire safety vision inspector based on deep neural network (DNN). The status of tire wear is categorized into three: 'safety', 'warning', and 'danger' based on depth of tire tread. We propose an attention mechanism for emphasizing the feature of tread area. The attention-based feature is concatenated to output feature maps of the last convolution layer of ResNet-101 to extract more robust feature. Through experiments, the proposed tire wear classification model improves 1.8% of accuracy compared to the existing ResNet-101 model. For detecting the tire defections, the developed tire defect detection model shows up-to 91% of accuracy using the Mask R-CNN model. From these results, we can see that the suggested models are useful for checking on the safety condition of working tire in real environment.
One of the important functions of an Intelligent Transportation System (ITS) is to classify vehicle types using a vision system. We propose a method using machine-learning algorithms for this classification problem with 3-D object model fitting. It is also necessary to detect road lanes from a fixed traffic surveillance camera in preparation for model fitting. We apply a background mask and line analysis algorithm based on statistical measures to Hough Transform (HT) in order to remove noise and false positive road lanes. The results show that this method is quite efficient in terms of quality.
In this paper, we propose an efficient method to detect shot changes in compressed MPEG video data by using reference features among video frames. The reference features among video frames imply the similarities among adjacent frames by prediction coded type of each frame. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. And the shot change detection algorithm is improved by using Fuzzy c-means (FCM) clustering algorithm. The FCM clustering algorithm uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
Communications for Statistical Applications and Methods
/
제22권1호
/
pp.55-67
/
2015
An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.
Pantograph sliding plate abrasion auto-detect system, one of the electric rail car auto-detecting devices, is a system that decides how much abrasion and when to replace without an inspector physically looking at the abrasion on the wet plate using machine vision, a cutting-edge technology. This paper covers the cause of deteriorating reliability that affects pantograph wet plate edge detection due to noise added to the video when it rains. In order to remove such noise, problems should be checked through Smoothing, Averaging mask and Median filter using filtering technique and stable edge detection without being affected by noise should be induced in video measurement used in machine vision technology.
In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
We present a surface-micromachined polysilicon capacitive accelerometer using unevenly distributed comb electrodes. The unique features of the accelerometer include a perforated proof-mass and the inner and outer comb electrodes with uneven electrode gaps. The perforated proof-mass reduces stiction between the structure and the substrate and the unevenly distributed electrodes shorten the electrode length required for a given sensitivity. The polysilicon accelerometer has been fabricated by the conventional 6-mask surface-micromachining process and showes a sensitivity of 1.03mV/g with a hybrid detection circuitry.
얼굴검출은 현재 많은 연구가 활발히 진행되고 있는 분야로 보안, 인식 등 다양한 응용분야를 갖는다. 본 논문은 카메라가 화자의 이동에 따라 이를 추적하여 회전하고 회의상황에 맞는 앵글을 유지하는 지능형 영상회의 시스템 개발의 기본요소인 화자검출의 선행단계로 얼굴검출에 대한 새로운 방법을 제안한다. RGB 색 공간의 입력영상을 YIQ 공간으로 변환한 후 IQ 성분은 피부영역검출에 Y 성분은 얼굴의 특성을 추출하는데 사용된다. 색 분포도를 이용하여 피부영역을 검출하고, 마스크를 누적 적용하여 잡음을 제거한 후 얼굴의 구조적인 특성과 명암의 분포를 이용하여 얼굴영역이 검출된다. 실험결과 다양한 배경의 영상에서 여러 명의 얼굴이 오류 없이 검출됨이 관찰되었다.
Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.
본 논문에서는 복잡한 배경을 갖는 동영상에서 얼굴의 윤곽선을 추출하기 위해 DCM(Dilation of Color and Motion information) 마스크와 동적 윤곽선 모델 (Active Contour Models; Snakes)을 적용한다. 먼저, 얼굴의 색상 정보와 움직임 정보를 모폴로지의 팽창과 AND 연산으로 결합한 DCM 마스크를 제안하여, 복잡한 배경이 제거된 얼굴 영역을 검출하고 영상 에너지의 잡음을 제거하기 위해 사용한다. 또한, 초기 곡선에 민감한 동적 윤곽선 모델의 단점을 극복하기 위해 얼굴 요소의 기하학적인 비율에 의해 추정된 회전정도에 따라 초기곡선을 자동으로 설정하고, 에지가 약한 부분에서의 윤곽선 추출을 위해 스네이크의 영상에너지로 에지강도와 밝기를 함께 사용한다. 실험을 위해, 복잡한 배경이 있는 실내 영상과 방송 영상으로부터 양 눈이 보이는 총 16명의 다양한 헤즈 포즈 영상을 총 480장 취득하였다. 결과적으로, 얼굴의 회전정도에 따라 보간된 초기곡선을 사용하고 에지강도와 밝기의 결합 영상에너지를 사용하는 경우에 평균 처리시간은 0.28초에서 보다 정교한 얼굴 윤곽선이 추출되는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.