• Title/Summary/Keyword: Martingale problem

Search Result 35, Processing Time 0.017 seconds

ON THE REPRESENTATION OF PROBABILITY VECTOR WITH SPECIAL DIFFUSION OPERATOR USING THE MUTATION AND GENE CONVERSION RATE

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • We will deal with an n locus model in which mutation and gene conversion are taken into consideration. Also random partitions of the number n determined by chromosomes with n loci should be investigated. The diffusion process describes the time evolution of distributions of the random partitions. In this paper, we find the probability of distribution of the diffusion process with special diffusion operator $L_1$ and we show that the average probability of genes at different loci on one chromosome can be described by the rate of gene frequency of mutation and gene conversion.

FINANCIAL SYSTEM: INNOVATIONS AND PRINCING OF RISKS

  • Melnikov, A.V.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1031-1046
    • /
    • 2001
  • The paper studies the evolution of the financial markets and pays the basic attention to the role of financial innovations (derivative securities) in this process. A characterization of both complete and incomplete markets is given through an identification of the sets of contingent claims and terminal wealths of self-financing portfolios. the dynamics of the financial system is described as a movement of incomplete markets to a complete one when the volume of financial innovations is growing up and the spread tends to zero (the Merton financial innovation spiral). Namely in this context the paper deals with the problem of pricing risks in both field: finance and insurance.

  • PDF

FEYNMAN-KAC SEMIGROUPS, MARTINGALES AND WAVE OPERATORS

  • Van Casteren, Jan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.227-274
    • /
    • 2001
  • In this paper we intended to discuss the following topics: (1) Notation, generalities, Markov processes. The close relationship between (generators of) Markov processes and the martingale problem is exhibited. A link between the Korovkin property and generators of Feller semigroups is established. (2) Feynman-Kac semigroups: 0-order regular perturbations, pinned Markov measures. A basic representation via distributions of Markov processes is depicted. (3) Dirichlet semigroups: 0-order singular perturbations, harmonic functions, multiplicative functionals. Here a representation theorem of solutions to the heat equation is depicted in terms of the distributions of the underlying Markov process and a suitable stopping time. (4) Sets of finite capacity, wave operators, and related results. In this section a number of results are presented concerning the completeness of scattering systems (and its spectral consequences). (5) Some (abstract) problems related to Neumann semigroups: 1st order perturbations. In this section some rather abstract problems are presented, which lie on the borderline between first order perturbations together with their boundary limits (Neumann type boundary conditions and) and reflected Markov processes.

  • PDF

Nonlinear Regression for an Asymptotic Option Price

  • Song, Seong-Joo;Song, Jong-Woo
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.755-763
    • /
    • 2008
  • This paper approaches the problem of option pricing in an incomplete market, where the underlying asset price process follows a compound Poisson model. We assume that the price process follows a compound Poisson model under an equivalent martingale measure and it converges weakly to the Black-Scholes model. First, we express the option price as the expectation of the discounted payoff and expand it at the Black-Scholes price to obtain a pricing formula with three unknown parameters. Then we estimate those parameters using the market option data. This method can use the option data on the same stock with different expiration dates and different strike prices.

On the Bayes risk of a sequential design for estimating a mean difference

  • Sangbeak Ye;Kamel Rekab
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.427-440
    • /
    • 2024
  • The problem addressed is that of sequentially estimating the difference between the means of two populations with respect to the squared error loss, where each population distribution is a member of the one-parameter exponential family. A Bayesian approach is adopted in which the population means are estimated by the posterior means at each stage of the sampling process and the prior distributions are not specified but have twice continuously differentiable density functions. The main result determines an asymptotic second-order lower bound, as t → ∞, for the Bayes risk of a sequential procedure that takes M observations from the first population and t - M from the second population, where M is determined according to a sequential design, and t denotes the total number of observations sampled from both populations.