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bDepartment of Mathematics and Statistics, University of Missouri Kansas City, USA

Abstract
The problem addressed is that of sequentially estimating the difference between the means of two popula-

tions with respect to the squared error loss, where each population distribution is a member of the one-parameter
exponential family. A Bayesian approach is adopted in which the population means are estimated by the posterior
means at each stage of the sampling process and the prior distributions are not specified but have twice contin-
uously differentiable density functions. The main result determines an asymptotic second-order lower bound,
as t → ∞, for the Bayes risk of a sequential procedure that takes M observations from the first population and
t − M from the second population, where M is determined according to a sequential design, and t denotes the
total number of observations sampled from both populations.

Keywords: Bayes risk, Fatou’s lemma, the martingale convergence theorem, one-parameter ex-
ponential family, sequential design, squared error loss, uniform integrability

1. Introduction

Let Ω denote an open interval and let Fθ, θ ∈ Ω, denote a one-parameter exponential family of proba-
bility distributions; that is, for each θ ∈ Ω,

dFθ(x) = exp {θx − ψ(θ)} dλ(x) for −∞ < x < ∞,

where ψ is a twice continuously differentiable function on Ω and λ is a non-degenerate sigma-finite
measure on the Borel sets of (−∞,∞). It is well known that if X is a random variable with a distribution
Fθ, then the mean and variance of X are ψ′(θ) and ψ′′(θ), respectively (Lehmann, 1959).

Let P1 and P2 denote populations with independent distributions Fθ1 and Fθ2 , where θ1, θ2 ∈ Ω

are unknown. A total of t observations are to be taken from the two populations, and the objective
of the study is to estimate the mean difference ψ′(θ1) − ψ′(θ2) with respect to the squared error loss,
using a Bayesian approach.

Let X1, X2, . . . denote observations sampled from the first population, P1, and let Y1,Y2, . . . denote
observations from the second population, P2. In the Bayesian framework, it is assumed that X1, X2, . . .
are conditionally independent sharing a common distribution Fθ1 , given Θ1 = θ1. Similarly, Y1,Y2, . . .
are presumed to be conditionally independent with a common distribution Fθ2 , given Θ2 = θ2. Addi-
tionally, X1, X2, . . . are conditionally independent of Y1,Y2, . . ., given Θ1 = θ1 and Θ2 = θ2; and that
Θ1 and Θ2 are independent random variables with respective prior density functions ξ1 and ξ2.
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For m ≥ 1 and n ≥ 1, let Fm,n indicate the sigma-algebra generated by X1, . . . , Xm, and Y1, . . . ,Yn.
Then, D denotes a sequential design defined as a sequence of indicators D1, . . . ,Dt, where Dk = 0
if the kth value is sampled from P2 and Dk = 1 if the kth value is from P1. The constants, D1 and
D2, satisfy D1 + D2 = 1 where Dk is Fmk ,nk -measurable for k = 3, . . . , t with mk = D1 + · · · + Dk and
nk = k−mk for k = 1, . . . , t. In the remainder of this paper, we denote mt and nt by M and N and Fmt ,nt

by Ft.
A sequential procedure for estimating the difference between the two population means, µ(θ1, θ2) =

ψ′(θ1)−ψ′(θ2), is the pair (D, µ̂t), whereD is the sequential design defined above and µ̂t = E{ψ′(Θ1)−
ψ′(Θ2)|Ft}. The Bayes risk incurred by the sequential procedure P = (D, µ̂t) is defined as

Rt(P) = E
[
(µ̂t − µ(Θ1,Θ2))2

]
. (1.1)

The problem considered is to find a sequential design for which the risk is minimal and to derive
its optimality. To this end, Woodroofe and Hardwick (1990) devise a quasi-Bayesian approach to
derive an asymptotic lower bound for the integrated risk and propose a three-stage procedure for
two normal distributions with a unit variance. For non-linear estimation, Shapiro (1985) adopts an
allocation strategy that has shown that the myopic rule is asymptotically optimal. In this context,
Rekab (1989, 1992) derives a first-order sequential procedure and asymptotic lower bound for the
Bayes risk, and Benkamra et al. (2015) further derive a nearly second-order asymptotically optimal
three-stage design. Song and Rekab (2017) extend the former approaches with a three-stage design to
obtain first-order efficiency.

In order to yield a minimal error in estimating the function of the parameters from two populations,
obtaining a lower bound contributes to a more refined approximation. However, obtaining a closed-
form expression of an exact lower bound for the Bayes risk, particularly in the absence of explicitly
specified prior density functions, is notably challenging. Rekab (1990) derives the first-order Bayes
risk lower bound for the difference between the means with the conjugate priors. Rekab and Tahir
(2004) further extend to a second-order lower bound for the Bayes risk. However, their work specifies
the priors as a conjugate, in which forms are provided by Diaconis and Ylvistaker (1979).

Now consider the difference between the two populations from the one-parameter exponential
family with the Bayes risk. When the conjugate prior is known, the lower bound of the Bayes risk is
as follows:

Rt(P) ≥
E

[
(
√
ψ′′(Θ1) +

√
ψ′′(Θ2))2

]
t

+ o
(

1
t

)
as t → ∞.

The objective of this study is, without an explicit assumption on the conjugate priors as such pro-
vided by Diaconis and Ylvisaker (1979), to establish an asymptotic second-order lower bound for the
Bayes risk. This result extends the lower bound result of Woodroofe and Hardwick (1990) and further
generalizes Rekab (1990), obtained for the difference between the means of two normal populations
with unit variance, using the difference of the sample means instead of the Bayes estimator.

The paper is organized as follows. In Section 2, we further describe the preliminary notations
and present the main result with an example. In Section 3, the proof of the main result is provided
with lemmas and remarks. In Section 4, we illustrate the implementation of the main result with a
numerical simulation showcasing the performance of the Bayes risk lower bound. Section 5 concludes
with some remarks on the main result and the future direction.



On the Bayes risk of a sequential design for estimating a mean difference 429

2. An asymptotic second-order lower bound

Let Rt(P) be as in (1.1). Then, it follows that

Rt(P) = E
[
Var{ψ′(Θ1) | X1, . . . , XM} + Var{ψ′(Θ2) | Y1, . . . ,YN}

]
.

Furthermore, Lemma A.2 (see Appendix) shows that

Var{ψ′(Θ1) | X1, . . . , XM} = E{(ψ′(Θ1) − X̄M)2 | X1, . . . , XM}

−
1

M2 (E{α1(Θ1) | X1, . . . , XM})2 ,

and

Var{ψ′(Θ2) | Y1, . . . ,YN} = E{(ψ′(Θ2) − ȲN)2 | Y1, . . . ,YN}

−
1

N2 (E{α2(Θ2) | Y1, . . . ,YN})2,

where for i = 1, 2,

αi(θ) =


ξ′i (θ)
ξi(θ),

if θ ∈ {θ ∈ Ω : ξi(θ) > 0}

0, otherwise.
(2.1)

Moreover, if ξ1 and ξ2 have compact supports in Ω, it follows from Woodroofe (1985) that

E{(ψ′(Θ1) − X̄M)2 | X1, . . . , XM} =
1
M

E{ψ′′(Θ1) | X1, . . . , XM}

+
1

M2 E{β1(Θ1) | X1, . . . , XM},

and

E{(ψ′(Θ2) − ȲN)2 | Y1, . . . ,YN} =
1
N

E{ψ′′(Θ2) | Y1, . . . ,YN}

+
1

N2 E{β2(Θ2) | Y1, . . . ,YN},

where for i = 1, 2,

βi(θ) =


ξ′′i (θ)
ξi(θ),

if θ ∈ {θ ∈ Ω : ξi(θ) > 0}

0, otherwise.
(2.2)

Hence, the Bayes risk becomes the following.

Rt(P) = E
[UM

M
+

VN

N

]
+ E

[AM

M2

]
+ E

[BN

N2

]
, (2.3)
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where

UM = E{ψ′′(Θ1) | X1, . . . , XM}, VN = E{ψ′′(Θ2) | Y1, . . . ,YN},

AM = E{β1(Θ1) | X1, . . . , XM} − [E{α1(Θ1)| X1, . . . , XM}]2,

BN = E{β2(Θ2)| Y1, . . . ,YN} − [E{α2(Θ2)| Y1, . . . ,YN}]2.

Next,

E
[
UM

M
+

VN

N

]
=

1
t

E
[( √

UM +
√

VN

)2
]

+
1
t

E
[
(N
√

UM − M
√

VN)2

MN

]
.

Thus, (2.3) becomes

Rt(P) =
1
t

E
[
UM + VN + 2

√
UMVN

]
+

1
t

E
[
(N
√

UM − M
√

VN)2

MN

]
+ E

[AM

M2

]
+ E

[BN

N2

]
.

(2.4)

In the remainder of this paper,

C(θ1, θ2) =

√
ψ′′(θ1)√

ψ′′(θ1) +
√
ψ′′(θ2)

.

For the following main result, the simple regularity conditions, as in Woodroofe (1985), are assumed.

Theorem 1. If Θ1 and Θ2 have compact supports in Ω, then for any sequential procedure P =

(D, µ̂t) such that

M
t
→ C(Θ1,Θ2) w.p.1 as t → ∞ (2.5)

then, the Bayes risk of P satisfies the following asymptotic lower bound:

lim inf
t→∞

(
t2Rt(P) − tE

[( √
ψ′′(Θ1) +

√
ψ′′(Θ2)

)2
])
≥

E
[
[γ′(ψ′(Θ1))]2ψ′′(Θ1)ψ′′(Θ2)

C(Θ1,Θ2)

]
+ E

[
[γ′(ψ′(Θ2))]2ψ′′(Θ1)ψ′′(Θ2)

C(Θ2,Θ1)

]
+

E
[
β1(Θ1) − [α1(Θ1)]2

[C(Θ1,Θ2)]2

]
+ E

[
β2(Θ2) − [α2(Θ2)]2

[C(Θ2,Θ1)]2

]
,

where γ(η) =
√
ψ′′(g(η)) with g being the inverse of ψ′ and α1(θ), α2(θ), β1(θ) and β2(θ) are defined

by (2.1) and (2.2).

The proof of Theorem 1 hinges on lemmas provided in Section 3.

Example 1. Suppose that Fθ is the exponential distribution with mean |θ|−1, where θ ∈ Ω = (−∞, 0)
and that Θi has p.d.f.

ξi(θ) =
sri

i

Γ(ri)
|θ|ri−1e−si |θ| for −∞ < θ < 0,



On the Bayes risk of a sequential design for estimating a mean difference 431

where ri and si are given positive real numbers. Then,

ψ(θ) = −ln(−θ), ψ′(θ) = −
1
θ
, ψ′′(θ) =

1
θ2 , γ(η) = η

αi(θ) = si −
ri − 1
|θ|

and βi(θ) = s2
i −

2si(ri − 1)
|θ|

+
r2

i − 3ri + 2
θ2 .

Using the fact that, for i = 1, 2,

E
[
[ψ′′(Θi)]p] =

s2p
i Γ(ri − 2p)

Γ(ri)

for any p > 0, yields

Rt(P) ≥
L1

t
+

L2 + L3

t2

for sufficiently large t, provided that r1 > 3 and r2 > 3, where

L1 =
s2

1

(r1 − 1)(r1 − 2)
+

s2
2

(r2 − 1)(r2 − 2)
+

2r1r2

(r1 − 1)(r2 − 2)

L2 =
s1s2

2

(r1 − 1)(r2 − 2)(r2 − 3)
+

s3
2

(r1 − 1)(r2 − 2)(r2 − 3)

+
s2

1s2
2

(r1 − 1)(r2 − 2)(r2 − 1)2 +
s3

1s2

(r1 − 1)(r1 − 2)(r1 − 3)(r2 − 1)

L3 = 1 −
3r1 − 5
r1 − 2

+
r2s2

1(1 − s2
2)

(r1 − 1)(r1 − 2)s2
−

(r2 − 1)s2
1

(r1 − 1)(r2 − 2)
.

3. Proof of Theorem 1

The following lemmas are needed for the proof of the theorem.

Lemma 1. Let γ(η) be as in the statement of Theorem 1. Then,

Var
{ √

ψ′′(Θ1) | X1, . . . , XM

}
≤

1
M

E
{[
γ′(ψ′(Θ1))

]2 ψ′′(Θ1) | X1, . . . , XM

}

+
1
M

E
{

[γ(ψ′(Θ1)) − γ(X̄M)]2

ψ′(Θ1) − X̄M
α1(Θ1) | X1, . . . , XM

}
,

and

Var
{ √

ψ′′(Θ2) | Y1, . . . ,YN

}
≤

1
N

E
{[
γ′(ψ′(Θ2))

]2 ψ′′(Θ2) | Y1, . . . ,YN

}

+
1
N

E
{

[γ(ψ′(Θ2)) − γ(ȲN)]2

ψ′(Θ2) − ȲN
α2(Θ2) | Y1, . . . ,YN

}
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w.p.1.

Proof: Let m ≥ 1 be a value of M, and let x = (x1, . . . , xm), where xi is a value of Xi. Also, let
xm = (x1 + · · · + xm)/m denote the value of XM . Then,

Var
{ √

ψ′′(Θ1) | M = m,X = x
}

= Var
{
γ(ψ′(Θ1)) | M = m,X = x

}
≤

1
cm

∫ [
γ(ψ′(θ1)) − γ(x̄m)

]2 Lm(θ1)ξ1(θ1)dθ1

= −
1

mcm

∫
[γ(ψ′(θ1)) − γ(x̄m)]2

ψ′(θ1) − x̄m
L′m(θ1)ξ1(θ1)dθ1,

where

Lm(θ1) = exp {mθ1 x̄m − mψ(θ1)} and cm =

∫
Lm(θ1)ξ1(θ1)dθ1.

Let η = ψ′(θ1). Then, θ1 = g(η) and dθ1 = g′(η)dη; so that

Var
{ √

ψ′′(Θ1) | M = m,X = x
}
≤
−1

mcm

∫
[γ(η) − γ(x̄m)]2

η − x̄m
L′m(g(η))ξ1(g(η))g′(η)dη,

=
1

mcm

∫
d
dη

[
[γ(η) − γ(x̄m)]2

η − x̄m
ξ1(g(η))

]
Lm(g(η))dη

by performing integration by parts. Next,

d
dη

[
[γ(η) − γ(x̄m)]2

η − x̄m

]
= 2γ′(η)

γ(η) − γ(x̄m)
η − x̄m

−

[
γ(η) − γ(x̄m)
η − x̄m

]2

= −

[
γ′(η) −

γ(η) − γ(x̄m)
η − x̄m

]2

+
[
γ′(η)

]2

≤
[
γ′(η)

]2 .

It follows that

Var
{ √

ψ′′(Θ1) | M = m,X = x
}
≤

1
mcm

∫
[γ′(η)]2Lm(g(η))ξ1(g(η))dη

+
1

mcm

∫
[γ(η) − γ(x̄m)]2

η − x̄m
ξ′1(g(η))g′(η)Lm(g(η))dη

=
1

mcm

∫
[γ′(ψ′(θ1))]2Lm(θ1)ξ1(θ1)ψ′′(θ1)dθ1

+
1

mcm

∫
[γ(ψ′(θ1)) − γ(x̄m)]2

ψ′(θ1) − x̄m
ξ′1(θ1)Lm(θ1)dθ1

=
1
m

E
{
[γ′(ψ′(Θ1))]2ψ′′(Θ1) | M = m,X = x

}
+

1
m

E
{

[γ(ψ′(Θ1)) − γ(X̄m)]2

ψ′(Θ1) − X̄m
α1(Θ1)

∣∣∣∣∣M = m,X = x
}
.
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The first assertion of the lemma follows. A parallel argument leads to the subsequent assertion. 2

Lemma 2. Let γ(η) be as in the statement of Theorem 1.

Var{
√
ψ′′(Θ1)ψ′′(Θ2) | Ft} ≤

1
M

E
{

[γ′(ψ′(Θ1))]2ψ′′(Θ1)ψ′′(Θ2) +
[γ(ψ′(Θ1)) − γ(X̄M))]2

ψ′(Θ1) − X̄M
α1(Θ1)ψ′′(Θ2) | Ft

}
+

1
N

E
{

[γ′(ψ′(Θ2))]2ψ′′(Θ1)ψ′′(Θ2) +
[γ(ψ′(Θ2)) − γ(ȲN)]2

ψ′(Θ2) − ȲN
α2(Θ2)ψ′′(Θ1) | Ft

}
w.p.1.

Proof:

Var{
√
ψ′′(Θ1)ψ′′(Θ2) | Ft} = E{ψ′′(Θ1)ψ′′(Θ2) | Ft} − [E{

√
ψ′′(Θ1)ψ′′(Θ2) | Ft}]2

= (E{ψ′′(Θ1) | Ft} − [E{
√
ψ′′(Θ1)|Ft}]2)E{ψ′′(Θ2)|Ft}

+ (E{ψ′′(Θ2)|Ft} − [E{
√
ψ′′(Θ2)|Ft}]2)[E{

√
ψ′′(Θ1)|Ft}]2

≤ Var{
√
ψ′′(Θ1) | X1, . . . , XM}E{ψ′′(Θ2) | Y1, . . . ,YN}

+ Var{
√
ψ′′(Θ2) | Y1, . . . ,YN}E{ψ′′(Θ1) | X1, . . . , XM}.

Now, use Lemma 1 to complete the proof. 2

Lemma 3. For any sequential procedure P = (D, µ̂t) that satisfies Condition (2.5)

tVar{
√
ψ′′(Θ1)ψ′′(Θ2)|Ft} → [C(Θ1,Θ2)]−1[γ′(ψ′(Θ1))]2ψ′′(Θ1)ψ′′(Θ2) +

[C(Θ2,Θ1)]−1[γ′(ψ′(Θ2))]2ψ′′(Θ1)ψ′′(Θ2)

w.p.l. as t → ∞.

Proof: Since

1
M

E
{

[γ(ψ′(Θ1)) − γ(X̄M)]2

ψ′(Θ1) − X̄M
α1(Θ1)

∣∣∣∣∣ X1, . . . , XM

}
→ 0,

and

1
N

E
{

[γ(ψ′(Θ2)) − γ(ȲN)]2

ψ′(Θ2) − ȲN
α2(Θ2)

∣∣∣∣∣ Y1, . . . ,YN

}
→ 0

w.p.l as t → ∞, by Lemma A.3, it follows from Lemma 2 that

lim sup
t→∞

tVar
{ √

ψ′′(Θ1)ψ′′(Θ2)
∣∣∣Ft

}
≤ lim sup

t→∞

t
M

E
{[
γ′(ψ′(Θ1))

]2 ψ′′(Θ1)
∣∣∣∣∣ X1, . . . , XM

}
E{ψ′′(Θ2) | Y1, . . . ,YN}

+ lim sup
t→∞

t
N

E
{[
γ′(ψ′(Θ2))

]2 ψ′′(Θ2)
∣∣∣∣∣ Y1, . . . ,YN

}
E{ψ′′(Θ1) | X1, . . . , XM}.
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Moreover,

t
M

E
{[
γ′(ψ′(Θ1))

]2 ψ′′(Θ1) | X1, . . . , XM

}
→

1
C(Θ1,Θ2)

[
γ′(ψ′(Θ1))

]2 ψ′′(Θ1),

and

t
N

E
{[
γ′(ψ′(Θ2))

]2 ψ′′(Θ2) | Y1, . . . ,YN

}
→

1
C(Θ2,Θ1)

[
γ′(ψ′(Θ2))

]2 ψ′′(Θ2)

w.p.l. as t → ∞, by Condition (2.5) of the theorem and Lemma A.4. Also,

E
{
ψ′′(Θ1) | X1, . . . , XM

}
→ ψ′′(Θ1) and E

{
ψ′′(Θ2) | Y1, . . . ,YN

}
→ ψ′′(Θ2)

w.p.l. as t → ∞, by Lemma A.4. Combining these results yield

lim sup
t→∞

tVar
{ √

ψ′′(Θ1)ψ′′(Θ2) | Ft

}
≤ [C(Θ1,Θ2)]−1 [

γ′(ψ′(Θ1))
]2 ψ′′(Θ1)ψ′′(Θ2) +

[C(Θ2,Θ1)]−1 [
γ′(ψ′(Θ2))

]2 ψ′′(Θ1)ψ′′(Θ2).

To establish the reverse inequality, first, write

tVar
{ √

ψ′′(Θ1)ψ′′(Θ2)|Ft

}
=

t
M

Var
{ √

Mψ′′(Θ1) | X1, . . . , XM

}
(E{

√
ψ′′(Θ2) | Y1, . . . ,YN})2

+
t
N

Var{
√

Nψ′′(Θ2)| Y1, . . . ,YN}(E{
√
ψ′′(Θ1)| X1, . . . , XM})2,

(3.1)

as in the proof of Lemma 2. Next, use Taylor’s expansion for γ ◦ ψ′ at Θ̂M = E{Θ1|X1, . . . , XM} to
obtain √

ψ′′(Θ1) = γ ◦ ψ′(Θ1) = γ(ψ′(Θ̂M)) + γ′(ψ′(Θ∗M))ψ′′(Θ∗M)(Θ1 − Θ̂M),

where Θ∗M is an intermediate variable between Θ1 and Θ̂M . It follows that

t
M

Var
{√

M
√
ψ′′(Θ1) | X1, . . . , XM

}
=

t
M

1
ψ′′(Θ̂M)

Var
{
γ′(ψ′(Θ∗M))ψ′′(Θ∗M)

√
Mψ′′(Θ̂M)(Θ1 − Θ̂M)

∣∣∣∣∣ X1, . . . , XM

}
Thus,

lim inf
t→∞

t
M

Var{
√

Mψ′′(Θ1) | X1, . . . , XM} E{ψ′′(Θ2) | Y1, . . . ,YN} ≥

1
C(Θ1,Θ2)

ψ′′(Θ1)[γ′(ψ′(Θ1))]2ψ′′(Θ2)
(3.2)

w.p.1, by first using Fatou’s lemma, then Condition (2.5) of the theorem, the fact that ψ′′(Θ̂M) →
ψ′′(Θ1) w.p.1, the fact that

Var
{
γ′(ψ′(Θ∗M))ψ′′(Θ∗M)

√
Mψ′′(Θ̂M)(Θ1 − Θ̂M)

∣∣∣∣∣X1, . . . , XM

}
→ [γ′(ψ′(Θ1))]2[ψ′′(Θ1)]2
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w.p.1 as t → ∞ since the posterior distribution of
√

Mψ′′(Θ̂M)(Θ1 − Θ̂M), given X1, . . . , XM , is
asymptotically normal with mean 0 and variance 1(see Bickel and Yahav, 1969) and the fact that
E{ψ′′(Θ2) | Y1, . . . ,YN} → ψ′′(Θ2) by Lemma A.4. A similar argument will yield

lim inf
t→∞

t
N

Var
{ √

Nψ′′(Θ2) | Y1, . . . ,YN

} [
E

{ √
ψ′′(Θ1) | X1, . . . , XM

}]2
≥

1
C(Θ2,Θ1)

ψ′′(Θ2)
[
γ′(ψ′(Θ2))

]2 ψ′′(Θ1)
(3.3)

w.p.l. Now take the liminf in (3.1) and use (3.2) and (3.3) to complete the proof. 2

Proof of Theorem 1: It follows from (2.4) that

Rt(P) ≥
1
t

E
[
UM + VN + 2

√
UMVN

]
+ E

[AM

M2

]
+ E

[BN

N2

]
. (3.4)

Next, let Wt = E{
√
ψ′′(Θ1)ψ′′(Θ2)|Ft} and Zt = Var{

√
ψ′′(Θ1)ψ′′(Θ2)|Ft}. Then, Zt = UMVN −Wt

2,
which implies that √

UMVN = Wt +
Zt

√
UMVN + Wt

.

Thus,

E
[
UM + VN + 2

√
UMVN

]
= E[UM] + E[VN] + 2E[Wt] + E

[
2Zt

√
UMVN + Wt

]
= E

[( √
ψ′′(Θ1) +

√
ψ′′(Θ2)

)2
]

+ E
[

2Zt
√

UMVN + Wt

]
. (3.5)

Combining (3.4) and (3.5) yields

t2Rt(P) − tE
[
(
√
ψ′′(Θ1) +

√
ψ′′(Θ2))2

]
≥ E

[
2tZt

√
UMVN + Wt

]
+ E

[
t2

M2 AM

]
+ E

[
t2

N2 BN

]
. (3.6)

Furthermore, by Lemma 3 and the martingale convergence theorem,

2tZt
√

UMVN + Wt
→

[γ′(ψ′(Θ1))]2
√
ψ′′(Θ1)ψ′′(Θ2) + [γ′(ψ′(Θ2))]2

√
ψ′′(Θ2)[ψ′′(Θ1)]3/2

C(Θ1,Θ2)

w.p.l. as t → ∞; so that

lim inf
t→∞

E
{

2tZt
√

UMVN + Wt

}
≥

E

 [γ′(ψ′(Θ1))]2
√
ψ′′(Θ1)ψ′′(Θ2) + [γ′(ψ′(Θ2))]2[

√
ψ′′(Θ1)]3

√
ψ′′(Θ2)

C(Θ1,Θ2)

 , (3.7)
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Table 1: Second-order optimality of sequential design with uniform priors

t Rt(P) Rt(O) EF
10 0.0471716 0.0458398 0.13317
20 0.0273274 0.0267399 0.23499
40 0.0148670 0.0145854 0.45066
50 0.0120676 0.0118844 0.45818

100 0.0062212 0.0061707 0.50473
200 0.0031577 0.0031458 0.47633
300 0.0021133 0.0021110 0.21545

Note. Rt(P) represents the Bayes risk incurred by the sequential design.
Rt(O) represents the Bayes risk incurred by the optimal design.

by Fatou’s lemma. Finally,

lim
t→∞

E
[

t2

M2 AM

]
= E

[
β1(Θ1) − [α1(Θ1)]2

[C(Θ1,Θ2)]2

]
, (3.8)

lim
t→∞

E
[

t2

N2 BN

]
= E

[
β2(Θ2) − [α2(Θ2)]2)

[C(Θ2,Θ1)]2

]
, (3.9)

by Lemma A.4 (see Appendix) since t2/M2 → [C(Θ1,Θ2)]−2 w.p.1 and t2/N2 → [C(Θ2,Θ1)]−2 w.p.1
by Condition (2.5) of the theorem, AM → β1(Θ1) − [α1(Θ1)]2 w.p.1, BN → β2(Θ2) − [α2(Θ2)]2 w.p.1
by Lemma A.4, AM , t > 0, and BN , t > 0, are both uniformly integrable martingales, and t/M and t/N
are bounded by Condition (2.5) of the theorem.

Then, the theorem follows by taking the liminf in (3.6) and using eqs. (3.7) to (3.9).

4. Numerical illustrations

In this section, we specialize the outcomes from Section 2 to Bernoulli trials, that is Xi takes values
in 0, 1 for i = 1, 2, . . . with probabilities 1 − θ1 and θ1, respectively. Similarly, Yi takes values in 0, 1
for i = 1, 2, . . . with probabilities 1 − θ2 and θ2, respectively. Here, θ1 and θ2 are independent random
variables constrained within 0 < θ1 < 1 and 0 < θ2 < 1. The prior density functions of θ1 and θ2
are denoted as ξ1 and ξ2, respectively. Both ξ1 and ξ2 are standard uniform distributions, defined as
ξ1(θ1) = 1 for 0 ≤ θ1 ≤ 1 and 0 otherwise, and ξ2(θ2) = 1 for 0 ≤ θ2 ≤ 1 and 0 otherwise.

Table 1 displays two columns of Bayes risks where Rt(P) and Rt(O) each correspond to the out-
comes of the fully sequential procedure and the optimal sampling scheme as described in Rekab
(1990). In Table 1, we denote EF as the rate of convergence or the excess of second-order Bayes risk
as follows:

EF = t2 {Rt(P) − Rt(O)} .

The results indicate that the Bayes risks of the fully sequential procedure and optimal sampling
scheme decrease with increasing t. The absolute excess of the Bayes risk comparing the fully se-
quential procedure to the optimal sampling scheme diminishes. Overall, the Bayes risk of the fully
sequential procedure performs closely to the optimal sampling scheme in terms of the second-order
excess or rate of convergence. Up to t = 100, the variability gain drives up the rate of convergence;
however, it diminishes again as t increases. The numerical simulation confirms that the second-order
excess behaves with increasing t under a non-conjugate prior for a density of one-parameter exponen-
tial families.
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5. Concluding remarks

In this study, we address the problem of estimating the mean difference between two populations, P1
and P2, modeled by one-parameter exponential families of probability distributions. The objective
was to estimate the difference ψ′(θ1) − ψ′(θ2) using a Bayesian approach, with a focus on minimizing
the Bayes risk through sequential designs. The central contribution of this work lies in establishing
an asymptotic second-order lower bound for the Bayes risk without explicit assumptions on conjugate
priors. By extending the results of previous works, such as Woodroofe and Hardwick (1990) and
Rekab (1990), we generalized the framework beyond normal distributions with unit variance, offering
a more comprehensive approach to Bayesian estimation in the context of one-parameter exponential
families. The main result underscores the complexities inherent in Bayesian estimation, particularly
in the absence of explicit prior specifications.

Application of the main result to the exponential distribution with nonstandard gamma prior, as
well as a numerical illustration with Bernoulli distribution with a uniform prior, are given. The numer-
ical simulation illustrates the second-order lower bound given by the full sequential design with the
best optimal design for several values of the sequence size. While the study presents a fully sequen-
tial design with Bayes risk, and it is not specified for a stage-wise procedure, there are other designs
that are of interest, including the two-stage design and the myopic design (see Terbeche, 2000). Fur-
thermore, in order to refine the approximation of the Bayes risk further, it may be desirable to attain
higher-order optimality (see Martinsek, 1983). Last but not least, this study can further benefit from
examining the tightness of the lower bound without specifying the conjugate prior.

Appendix

Lemma A.1: For i = 1, 2, let µ̂in = E{ψ′(Θi)|Xi1, . . . , Xin}, where X1 j = X j and X2 j = Y j . If Θi has a
a compact support on Ω, then

µ̂in = Xin +
1
n
αin,

where αin = E{αi(Θi)|Xi1, . . . , Xin}.

Proof: For simplicity, the subscript “i” is omitted in the proof. Let

Ln(θ) = exp{nθx̄n − nψ(θ)} and cn =

∫
Ln(θ)ξ(θ)dθ,

where x1, . . . , xn are the observed values of X1, . . . , Xn. Then,

µ̂n = E{ψ′(Θ)|X1 = x1, . . . , Xn = xn} =
1
cn

∫
Ω

ψ′(θ)Ln(θ)ξ(θ)dθ

= −
1

ncn

∫
Ω

L′n(θ)ξ(θ)dθ + xn =
1

ncn

∫
Ω

Ln(θ)ξ′(θ)dθ + xn

=
1

ncn

∫
Ω

Ln(θ)α(θ)ξ(θ)dθ + xn =
1
n

E{α(Θ)|X1 = x1, . . . , Xn = xn} + xn

by using integration by parts. The lemma follows. 2
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Lemma A.2: If Θi has a compact support, then

Var{ψ′(Θi) | Xi1, . . . , Xin} = E{[ψ′(Θi) − Xin]2 | Xi1, . . . , Xin}

−
1
n2 [E{αi(Θi)|Xi1, . . . , Xin}]2,

where X1 j = X j and X2 j = Y j.

Proof: For simplicity, the subscript “i” is omitted in the proof. Lemma A.1 yields

ψ′(Θ) − µ̂n = ψ′(Θ) − Xn −
1
n
αn.

Thus,

Var{ψ′(Θ) | X1, . . . , Xn} = E{[ψ′(Θ) − µ̂n]2 | X1, . . . , Xn}

= E{[ψ′(Θ) − Xn]2 | X1, . . . , Xn}

−
2
n
αn[E{ψ′(Θ) | X1, . . . , Xn} − Xn] +

1
n2α

2
n

= E{[ψ′(Θ) − Xn]2 | X1, . . . , Xn} −
2
n
αn

(
1
n
αn

)
+

1
n2α

2
n

= E{[ψ′(Θ) − Xn]2 | X1, . . . , Xn} −
1
n2α

2
n.

2

Lemma A.3: Let M and N be as in Theorem 1. Then,

t
M

E
{

[γ(ψ′(Θ1)) − γ(X̄M)]2

ψ′(Θ1) − X̄M
α1(Θ1)

∣∣∣∣∣ X1, . . . , XM

}
→ 0,

and

t
N

E
{

[γ(ψ′(Θ2)) − γ(ȲN)]2

ψ′(Θ2) − ȲN
α2(Θ2)

∣∣∣∣∣ Y1, . . . ,YN

}
→ 0

w.p.l as t → ∞.

Proof: A simple expansion yields

γ
(
ψ′(Θ1)

)
= γ(XM) + γ′(U∗M)

[
ψ′(Θ1) − XM

]
,

where U∗M is a random variable between ψ′(Θ1) and X̄M . Combining this observation and Lemma A.1.
yields

t
M

E
{

[γ(ψ′(Θ1)) − γ(X̄M)]2

ψ′(Θ1) − X̄M
α1(Θ1)

∣∣∣∣∣ X1, . . . , XM

}
=

t
M2

[
γ′(U∗M)

]2 E
{
[α1(Θ1)]2 | X1, . . . , XM

}
.
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Next, there exist positive numbers a and b such that |γ′(U∗M)| ≤ a w.p.1 and |α1(Θ1)| ≤ b w.p.1. since
γ is continuously differentiable on ψ′(Ω1) and α1 is continuously differentiable on Ω1, the compact
support of Θ1. It follows from this observation that∣∣∣∣∣ t

M
E

{
[γ(ψ′(Θ1)) − γ(X̄M)]2

ψ′(Θ1) − X̄M
α1(Θ1)

∣∣∣∣∣ X1, . . . , XM

} ∣∣∣∣∣ ≤ a2b2

tδ2 → 0

w.p.1 as t → ∞. The second assertion can be established similarly. 2

Lemma A.4: Let h1(Θ1) and h2(Θ2) be continuous functions of Θ1 and Θ2, respectively. Then,
E{h1(Θ1)|X1, . . . , XM} and E{h2(Θ2)|Y1, . . . ,YN} are uniformly integrable martingales and

E {h1(Θ1) | X1, . . . , XM} → h1(Θ1)
E {h2(Θ2) | Y1, . . . ,YN} → h2(Θ2)

w.p.1 as t → ∞.
Proof. See Theorem 6.6.2 of Ash and Doleans-Dade (2000).
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