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FINANCIAL SYSTEM: INNOVATIONS
AND PRICING OF RISKS

A. V. MELNIKOV

ABSTRACT. The paper studies the evolution of the financial mar-
kets and pays the basic attention to the role of financial innova-
tions (derivative securities) in this process. A characterization of
both complete and incomplete markets is given through an iden-
tification of the sets of contingent claims and terminal wealths
of self-financing portfolios. The dynamics of the financial system
is described as a movement of incomplete markets to a complete
one when the volume of financial innovations is growing up and
the spread tends to zero (the Merton financial innovation spiral).
Namely in this context the paper deals with the problem of pricing
risks in both field: finance and insurance.

1. Introduction

The space equipped with such a structure as financial markets, inter-
mediaries (banks, insurance companies,...), clients (firms, individuals,...)
operating their financial resources is called financial system.

The evolution of the World financial system has crossed at least sev-
eral stages: “Gold Standard”, “Bretton-Wood mechanism”, ”Floating
exchange rates”. Its deep changes for the last 25 years can be explained
by the wide spectrum of new financial instruments and by the progress
in information and computer technologies. A new scale of financial in-
termediation, extending bounds of credit mechanisms, new processes of
internationalization in finance and insurance are comprehensive features
of the financial system. To provide very important financial system func-
tions in managing risks, payment flows, insurance, savings, borrowings,
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ete. it is necessary to take into account these new objects and reduce
previous view points to financial markets ([5]).

On one hand there is a real process of financial innovations and prob-
lems of pricing risks in finance and insurance. On the other hand new fi-
nancial instruments {forwards, futures, options, swaps,...) can be priced
in framework of the comprehensive actuarial and financial mathematics.

This paper is an attempt to give an appropriate description of these
convergent processes in practice and in the theory.

2. Imnovative changes in financial system

During the “Bretton-Wood system” (1944-1971) the price of gold and
exchange rates were fixed with respect to the US dollar. And therefore
the institutional methods were attracted to managing such a system.
For instance, The International Monetary Fund (IMF) was established
with this basic aim. When the Bretton-Wood mechanism was destroyed
the exchange rates became random. To control such system with “float-
ing exchange rates” it was necessary to use functional methods based
on financial innovations, or derivative securities like forwards, futures,
options, swaps, etc. Financial intermediaries have gotten a new role
too. They were shifted to credit instruments when capital market risks
were diversified in the corresponding derivative securities markets. The
problem of risk management became more complicated because the de-
rivative securities pricing was more volatile.

The financial business practice replicated by opening of the new ex-
changes: Chicago Board of Options Exchange (CBOE), London Inter-
national Financial Futures Exchange (LIFFE), etc. Moreover the old
exchanges (CBOT, AMEX, NYSE, etc.) shifted their activity to dif-
ferent kinds of financial innovations too. The whole volume of using
derivative securities was permanently growing up: from 500 billion of
the US dollars in 1985 to 3500 billion in 1991. The same tendency was
in 90-th as well ([31]).

Looking at the innovation processes in finance we should emphasize
some features of these processes in industry. Industrial “know-how”
sometimes leads to very important changes in all sections of the indus-
try. So, development in computer science and information technology
led in the last 20 years to a real revolution in the finance industry. New
information, computer based technologies allow to store and use in real
time a huge information. Therefore traders became new facilities for
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choosing arbitrage possibilities in the markets, for permanent monitor-
ing of financial information, for managing huge portfolios, for reducing
transactions, for transferring their activity to global financial market.
As a result the structure of banks and investing companies was enriched
by “front-office”, “middle-office”, “back-office”.

Automatic financial “risk-management systems” became a reality.

The progress in information, computer based technologies allowed to
study very deeply the real behavior of financial markets because the
intra-day information could be taken into account. This is a huge infor-
mation (changes in the rate USD/DM are registered 18000 times per day
which is equivalent to a day-information for 72 years). Now, for instance,
90% of FOREX-market is operated by intra-day traders. Moreover anal-
ysis of intra~-day information leads to a very important inference about
the fractal structure of financial markets ([15], [24]).

These dynamic changes in real financial markets demanded an ad-
equate theory. Recall, that there existed only one-step theories by
Markowitz [21], Sharp [30], and Lintner [20] with their diversification
inferences and ideas of the efficient market.

The new important theory was developed by Black, Scholes and Mer-
ton (3], [26]. Their option pricing theory (OPT) or contingent claim
analysis (CCA) gave real possibilities for dynamic hedging and invest-
Ing in connection with financial innovations. It meant the final transi-
tion from the financial arithmetics to stochastic financial and actuarial
mathematics. non-arbitrage, completeness and incompleteness of the
markets became systematically used as the key characteristics of pricing
derivatives.

The next section gives a general description of notations, facts and
perspectives of this theory.

3. Dynamics of financial system: from incomplete markets
to a complete one through financial innovation expan-
sions. Facts, models and methods

Consider a financial market model ((B,S)-market) as a pair of non-
risky (bank account) B and risky (stock) S assets represented by their
prices B; and Sy, where ¢t = 0,1,2.., (discrete-time model) or ¢t > 0
(continuous-time model).

Let us define (for fixed T') a function fr = fr(Sp,...,S7), which
called a contingent claim. Taking a non-risky asset B; and a risky asset
S; in amount 3; and v, respectively we form an investment portfolio
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7y = (B¢, ). The capital of such a portfolio 7 is equal to
X7 (z) = BiB: + 1S, X({z) = ¢.
Denote by SF the set of self-financing portfolios =
r € SF, if XT(z) — X[ 1(z) = A X[ (z) = BABy + nAS:

(dXT(z) = BdB: + 1:dS; in continuous time if differentials dB; and dS;
are well defined).

Arbitrage (at time 7)) means a possibility to make a positive capital
at time T (with a positive probability) by some self-financing portfolio
starting from zero initial capital.

Any derivative security on the given (B,S)-market can b e iden-
tified with a corresponding contingent claim. For instance, forward
contract with forward price F and expiration date T is equivalent to
fr = fr{St) = F and call option with the strike price K is equivalent
to fr = (St — K)*, etc. So the set of derivative securities induces a set
of graphs (CCG).

On the other hand, the set of self-financing portfolios forms a set of
graphs of its terminal values X7 (z) (TVG). The market is complete if
TVG=CCG. Otherwise it is incomplete.

In other words, the market is called complete iff any contingent claim
fr can be replicated: there exist « > 0 and = € SF such that XE(x) =
fr.

There is an important question: how to describe the risky asset S?
The natural answer is to model the prices S; as a random process. There-
fore it is quite natural to have some fixed probability space, where the
prices of all assets are stochastic processes.

Denote by V; the price of fr at timet < T One of the basic problems
is to describe this stochastic process in terms of the (B, §)-market.

The heuristic principle of obtaining the price V; consists of two ideas:
the value fr should be discounted by the non-risky asset Bt% and its

conditional expectation E[B;Bs' fr|F}] one can take as a candidate for
Vi.

The first idea is perfect, but the second one can be criticized: why
should we look at the price V; from the view point of the physical measure
P? Any probability measure P* on {Q, F, P} defines its own “probability
character” of the market prices B; and S;. It is clear that the “stable”
character of the market should lead to more “natural” price of the given
contingent claim. So, this heuristic principle should be adjusted by
choosing such a character, or some probability measure P* which is
equivalent to P.
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The non-arbitrage principle gives a perfect way for such an explana-
tion, which is based on the following.

The (B, S)-market admits no arbitrage possibility if there exists a
probability measure P* such that P* is equivalent to P and the process
of discounted risky asset prices B, 15, is a martingale with respect to
P*. Tt turns out that often this statement can be reversed ([16], [33]).

Therefore the measure P* is called a martingale one and gives a a
form of the market stability. That is why P* is called “risk-neutr
measure.

According to Harrison and Pliska [17], the uniqueness of P* leads to
the statement: O n the non-arbitrage complete (B, .S)—market the price
of any contingent claim f can be defined uniquely iff the martingale
measure is unique. Here is the sketch of the proof.

(=) Let us assume there are two martingale measures P},i = 1,2.
Define two processes as price processes for given contingent claim fr:

V¢ = B.E!|B; fIR],i=1,2.

But V! = V;2 and therefore P} = Py.

(<) In view of the previous statement there a martingale measure
P* such that and are local martingales with respect to P*. But
P* is unique and therefore the price process V; can be defined uniquely
with V; = B,E*[B7f|F}).

As a result we arrive to the following methodology of pricing contin-
gent claims in complete markets:

Assume that the (B, S)-market is complete and P* is a unique mar-
tingale measure. Define the price V; of a given contingent claim fr by
the following

V, = B.E*[B7 IR

Then (B, S,V) is a unique system of prices for (basic and derivative)
securities when the corresponding expanded market admits no arbitrage.
Moreover, there exists such a hedging strategy m € SF that X[ (Vy) =
Vit <T.

This statement can be interpreted as a possibility to reduce any risk
{connected with any contingent claim) to zero. Below we give several
classical examples of complete markets to illustrate this.

Binomial model or Cox, Ross, Rubinstein model [6].

Denote by p; = SAf‘l for t = 1,2,... the rate of return of the risky
asset 5. Assume that p = (p¢);/4e1 is a sequence of independent random
variables with two values b > @ and corresponding probabilities p and
1—p, p € (0,1). Rewriting p; = p+ w;, where p = bp -+ a(l ~p} = Ep;
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we can represent p; as a random walk near the mean relative rate of
return p. If the interest rate of B is r, the unique martingale measure
is defined by p* = ;=2 ifb>r >a > —1.

Bachelier model [2]

This is a pure continuous model and the corresponding interest rate
of § is defined by dS; = u + o4ils, Sp > 0, where w; is the well-known
Gaussian ”white noise” and ¢ is a volatility parameter.

The non-arbitrage principle gives the following price for the call op-
tion fr = (Sy — K)™.

Define a martingale measure dP}/dPr = exp {—EwT -3 (g)zT}

According to the methodology described above we obtaine the initial
price of the call option:

Cr = Vy = E*(St — K)*

- =02 (27) +ovTe (2T,

T

where ®(z) = [*_ o(y)dy, ¢(z) = ﬁe_? and the interest rate of B
is equal to zero.
Geometrical Brownian Motion of the Black-Scholes-Merton (3], [26].
Consider the following relative rates of return for B and S:
B, _ 5 ,
MBE :T’B'; = i+ ow;.

(=]

It is clear that the graphical realization of %T; will be the same as in
the Bachelier mode] for S}.
This model can be rewritten in the form of the stochastic differential
equations:
dBt = BgT dt, dSt = St(ﬂ dt + adwt),
where w is a Wiener process (Brownian motion), or in t he following
“exponential form”

Bt = B()e Sg Soe'”t +awt

The non-arbitrage principle leads to the unique martingale measure
dP; = Z3dP with the density Z5 = exp {— (%) wr — § (457)°T}.

(24

According to the non-arbitrage methodology the call option price equals
to

Cr(T,r,0) = E*e™ (S — K)* = Sod(ds(r)) — Ke~To(d_(r)),
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5 o2
where dy (r) = RGENTELES)

av'T
This is the famous Black-Scholes-Merton formula.

Note, the heuristic principle gives another price
Ch.euristz'c(»u') = e(u—r)TSO(I)(dJr (I-L)) - Ke—rT‘I’(d— (,U,))
and therefore
Cheu'r'ist'ic(r) = C(Ta T, U)'
The third method used by Black and Scholes is the method of differen-
‘tial equations ([10]). It briefly means the following. Let fr = g(57),9 >

0 be a measurable function. Consider portfolios with the capital of the
form V; = v(S;,t},t < T, a smooth function, such that

v(S:, T) = g(z},z >0
viz,t) > 0,2>0,t <T.

Applying the Ito-Kolmogorov formula to v{S;,t)/ B, we have
¢

50149, [2.5),

0

+f (g” + L% — )B;ldu,
0

+ %02332%5 is the generator of the diffusion process

where L0 = rm%
St.

It is clear that V, = (S, t) is the capital of a self-financing strategy
lﬁ Z+ L%y —rv = 0 (Black- Scholes equation). It means v is a harmonic
functlon for the operator L = Bt + LY —

So, it is necessary to solve this equation under the above boundary
conditions. If g(z) has a polinomial growth such a solution does exist
and v(z,t) has a form

u(z,t) = f By, T — t,2)g(y)e T~ dy,
0
1

o2
where 3(y,t,z) = yml/ﬁ exp {—11"_—1'12;—?—_7—) is a lognormal distri-

bution density. What about the non-arbitrage principle for incomplete
markets? There is a set M(S/B) of martingale measures and it is impos-
sible to replicate fr by some self-financing strategy. Consider a richer
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set of portfolios {(7,C) : m = (8,7}, C is an increasing process} called
portfolios {7) with consumption (C}. For such a portfolio (x,C) the
corresponding capital has a form

¢ ¢
Xtmc Xg’c S -1
=5 +f7ud = ufBu dc,,
0 0

which is a supermartingale w. r. to any P* € M(S/B).
According to the optional decomposition ([18], [25]) any positive su-
permartingale can be represented in this form.

Consider the following supermartingale %} = esssup E* {B; 1 fT|Ft]
P*eM(5/B)

(Snell envelope). It's clear that ‘—E:"*;} = j;lT and therefore and there-
fore Vi = fr (a.s.). For any hedging strategy (=,(C) with the capital

Vi= X “ we have according to the supermartingale property of V; that
for P* € M(S/B) and for t > 0

Vi « (VT < I
RAZEN Tip)>p (LD
Bt_E (BTl t)“ (BT) (8.5

Therefore the process V* is minimal and according to the optional
decomposition there exists such a minimal hedge (7*, C*).

So, in the case of incomplete markets the natural price for fr should
be esssup E* [BJT1 fT|Ft] B;. This approach is called superhedging.

P*eM(S/B
Below w(e/sl)low this methodology for quite a representative incomplite
market example. This is so-called (B, §)-market with stochastic volatil-
ity, see [36]:

dBt = BtT‘ dt,
dSt = St(y,dt + Eg dwt),

where 1 is a constant. £7 = 62 + (—1)M Ag?,0 < Ac? < o2, where N;
is a standard Poisson process with intensity A > 0 independent of the
Wiener process wy. According to the Ito-Kolmogorov formula

S S "
(5),-(5), 2

where dwj = dw; + ‘“):;: dt.

It is clear that a measure P € M(S/B) if and only if the process w*
is a (local) martingale. But by virtue of the Girsanov theorem ([10],
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[31], [25]) any P € M(S/B) has a local density (w.r. to P) of the form:

t
_ T — r — 2 -
Z; = exp f( Eu'u dw, - (ﬁ';f)_du) Ni,
0

where N is a (local) martingale which is orthogonal to w w.r. to P.
The (local) martingale

¢
— _ 2
Z, =exp I(TE 'udwu (T”;;) du)
u
0

is a uniformly integrable martingale in view of the Novikov condition:

T

1 r—pQ
Eexp Ef(ilu) du

T
r—
= Eexp / +(L\0'2#) o du} < 00,

0

b =

Therefore the set M(S/B) # # and there exist at least two martingale
measures defined as
T

5+ _ T ()
T =P f <\/02 a2 ™ Ao AT d“)
0

and the market is incomplete.
Putting omin = Vo2 — Ac? and omax = Vo2 + Ag? we can represent

¥; in such a way

dEt - (Umax — Jmin)(I{Et,:om-m} — I{Et—:ama}(}) dNt

and T;— = Omax. Let us represent the() capital of the minimal hedge
Vi = 9(S:,t) with 4 = ‘S_Z(Sht)= where

Oz, t) = e_r(T_t)supEg(Srfna_)t).
Sl is a controlled diffusion process which is a strong solution of the
following stochastic differential equation
dS(®) = S (r du + o dw,), S = ,

where the “control” parameter o = {4 )i<7 value is in the set {Omin, Fmax }-
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From the general theory of controlled diffusion processes ([19]) 4 €
C?! and satisfies the Bellmann equation:

o o . 1 58D . o
‘“3‘t—+L ’U—'T"U‘l‘iﬂf I@IAU =0,
o(z, T) = g(=).

To solve this equation let us apply the small parameter approach
denoting by V*(o?, Ac?) the capital of the minimal hedge in this sto-
chastic volatility model and V*(a?,0) the corresponding capital in the
Black-Sholes model. We have

. « avy*
Vot A 2 V(04 0) + (g ) e Ao’
=vO L vAL2
Thus V can be written in the form
= PO 4 A2

and therefore the Bellmann equation is reduced to

. . 118270 g2y
(0) T (1) 2, - 2 2 __
LV 4+ LV Ag +2 552 + 552 Ac*| Ao 0
and
. . 1|82V 1192V
(0) {1) 2 - I A 232 _
LV® + LV Ac® 4+ 5 | 5a2 i (Ac*)* =0,

where L = gt— + L% — . Taking into account that V©) is the capital of
the minimal hedge in the Black-Sholes model we arrive to the following
equation

§2y 10

5a2 Ac? =0

LV AC? + %

(up to te rms of the Ac? order).
Therefore the initial problem can be rewritten as a new boundary
value problem

LVD (z,u) = h(z,v)
vz, T) =0,

82y
32

where h(z,u) = —1
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Applying the Kolmogorov-Ito formula we have

t
(S, £) - / B(Su,u) du = VD (S5,0)
0

t

7(1)
+fags(8u,u) de™ ™S,
0
t

+ f(LV(l)(Su,u) — h(S,,u)) du,
0

and therefore
Vv (z,0) = Ele " TVO(Sr, T)

p T av
- / h(Su, ’U) du — / w(su, ’LL) de"’""Su]
0 0

T

- _E / h(Su, u) du.
0
As a result we get the following upper bound for the non-arbitrage price
in the model under consideration:
T

1
C*(o, Ac?) = Clo) + sup EQ/—
QEM(S/B) 2

a2y (0

557 AO’2,

where C{o) is the fair price of in the Black-Sholes model with volatility
.

Another method is based on the mean-variance hedging approach
([12], [29]), which gives another confirmation that in incomplete markets
risks connected to non-redundant contingent claims can be minimized.

Now let us discuss a relationship between complete and incomplete
markets ([25]).

Let us consider the difference

A = esssup EBElfT — essinf E‘B,ElfT.
PeM(S/B) PeEM{5/B)

We shall interpret A as a natural measure of incompleteness of the

market because A = 0 for any complete market. This is so-called spread.
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Let us note the other characteristics related to completeness and in-
completeness: leasing and transaction costs. Usually, leasing of the stock
Sy costs 1;5; and paymen t for transaction costs &;|Avy|S; where I, and
d; are leasing and transaction costs coefficients.

Involving new financial derivative securities makes the initial market
“more complete” with smaller A,/ and 4.

Merton was the first one {[27], [28]), who identified the movement of
incomplete markets to a complete one as a “financial innovation spiral” .
He wrote ([27, p. 468]) about changes in financial system:

“From the perspective of our theory, these same facts about change
are as consistent with a real-world dynamic path evolving toward an ide-
alized target of an efficient financial market and intermediation system.
On this promise, these changes can be interpreted as part of a “finan-
cial innovation spiral’ . That is, the profferation of new trading markets
makes feasible the creation of new financial products; to hedge these
products, producers trade in these new markets and volume expands;
increased further implemetation of new products and trading strategies,
which in turn leads to still more volume. Success of these trading mar-
kets encourages investment in creating additional markets and so on it
goes ..., spiraling toward the theoretically limiting case of zero marginal
transaction costs and dynamically complete markets”.

That’s why we call the next picture as “Merton financial innovation
spiral” (A, 5,1 — 0):

COMPLETE
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“Merton’s spiral” < Dynamics of incomplete markets towards a com-
plete one when A,§,! — 0 and the volume of financial innovations is
growing up.

4. Financial innovations and insurance risks

Any derivative security is characterized by insurance properties. Tra~
ditional ingurance business pays the very important attention to risk of
such a business. The difference between the traditional insurance and
insurance by means of derivative securities is the following. In the first
case an insurer sells his risk to an insurance company and in the second
case the corresponding risk is distributed around the financial market.

The main object of the risk theory is the surplus process ([7], [14],
[23]):

Ny
R¢=u+ct—Z§k,
k=1
where u is the initial capital, ¢ is the rate of premiums, £ are claims
(independent identicaly distributed random variables), N; is a Poisson
process.

The key characteristic for any insurance company as its solvency can
be characterized as a positivity of the surplus process R; through the
time. Traditionally, the probability of such an event (ruin probability
&(u)) is used as the adequate deterministic characteristic for solvency:

¢(u) = P{w : Ry(w) < 0 for some ¢t > 0| Ry = u}.

Under mentioned above classical assumptions this probability admits
upper exponential bound (Cramer-Lundberg estimates):

P{u) < exp{—Ku},
where K is the Lundberg constant.

The typical idea of the classical actuarial mathematics is the follow-
ing: given risk level € > ( is compared to this bound for ¢(u) to find a
minimal solvency level u,.

The traditional risk theory does not take into account any investrment
activity of the company. Therefore it is necessary to apply a financial
market model to describe its investment strategies.

Starting from this point the natural expansion of the traditional risk
theory is lying in the field of financial mathematics ([32], [9]).

Assume that the investment of the company is making to stock $,
driven by Geometrical Brownian motion dS; = S;(p dt + o dwy). Then
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the evolution of the corresponding risk process Ky can be represented in
such a way:

Nitar

th = (,udt + O'dwt,)Rg_ +edt — 2 §k
k=N

The exponential bound for ¢(u) is the worst in this case. But one
can derive an integro-dif ferential equation for ¢(x) and find asymptotics
for such a probability. Again one can repeat a previous procedure for
finding u. by comparing the non-exponetial asymptotics (or appropriate
approximations for solutions of the integro-differential equation) to a
given risk level e {for instance, [13], [22}).

As financial mathematics was enriched by financial innovations in the
last 25 years the traditional actuarial mathematics should be enriched
by involving of insurance derivative securities. Excellent examples in
this direction are given by catastrophe insurance futures and options
traded by Chicago Board of Trade (CBOT) since 1992 ([1], [4], (8], [11],
34], [35)).
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