• Title/Summary/Keyword: Mars Exploration

Search Result 51, Processing Time 0.029 seconds

A Case Study in the Mars Landing Site Selection for Science Objects

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.375-380
    • /
    • 2012
  • It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

Analysis of ionospheric payloads for Mars exploration (화성 전리층 관측 탑재체 성능 분석)

  • Kim, Eojin;Seo, Haingja;Kim, Joo Hyeon;Lee, Joo-Hee
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.94-104
    • /
    • 2013
  • In solar system, Mars which has the most similar environment with the Earth has been steadily studied for the purpose of habitable environment for the future manned exploration and settlement. During the daytime, Martian ionosphere can be used for the ground-ground communications between lander and rover through the reflection of the radio wave from ionosphere. In addition, researches about Martian ionosphere provide the link of revolution of water and atmosphere. Martian ionospheric observations were performed by the occultation experiments onboard Mariner, Mars, Viking series during early Martian explorations as well as recent Mars Global Surveyor. Low frequency radar and plasma analyzer are on board Mars Express and Viking-1, 2 lander obtained the only vertical plasma density profile during their entry phase. In this paper, we studied the characteristics of scientific payloads observing Martian ionosphere and then analyzed the usability of ionospheric research according to the communication and climate on Mars.

The Investigation of Mineral Distribution at Spirit Rover Landing Site: Gusev Crater by CRISM Hyperspectral data and Target Detection Algorithm (CRISM 초분광 영상과 표적 탐지 알고리즘을 이용한 Spirit 로버 탐사 지역: Gusev Crater의 광물 분포 조사)

  • Baik, Hyun-Seob;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.403-412
    • /
    • 2016
  • Compact Reconnaissance Imaging Spectrometer for Mars(CRISM) is 489-band hyperspectral camera of Mars Reconnaissance Orbiter(MRO) that provided data used on many mineral researches over Martian surface. For the detection of minerals in planet, mineral index using a few spectral bands have been used. In this study, we applied Matched Filter and Adaptive Cosine Estimator(ACE) target detection algorithm on CRISM data over Gusev Crater: landing site of Spirit(Mars Exploration Rover A) to investigate its mineral distribution. As a result, olivine, pyroxene, magnetite, etc. is detected at Gusev Crater's Columbia Hills. These results are corresponding to the Spirit rover's field survey result. It is expected that hyperspectral target detection algorithms can be used as effective and easy to use method for the detection and mapping of surface minerals in planet.

Investigation of the Characteristic Nighttime Temperature of Potential Caves on Mars

  • Park, Nuri;Hong, Ik-Seon;Jung, Jongil
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.141-144
    • /
    • 2022
  • By providing an environment where energetic particles and micrometeorites can not penetrate, caves on Mars may serve as a human shelter in future Mars explorations. More than 1,000 cave entrance candidates have been detected; however, their physical characteristics that can be utilized in detecting more candidates have not been explored in detail. In this paper, we explore the nighttime temperature of 100 cave entrance candidates and their surrounding areas to investigate 1) the nighttime temperature tendencies relative to their surrounding areas and 2) the extent of these temperature differences. We find that 79% of the cave entrance candidates exhibit higher temperatures than the surrounding areas, and 59% show a temperature difference over 20K, suggesting that the cave entrances may generally show higher temperatures than the surrounding areas during the nighttime.

Opportunity Rover's image analysis: Microbialites on Mars?

  • Bianciardi, Giorgio;Rizzo, Vincenzo;Cantasano, Nicola
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.419-433
    • /
    • 2014
  • The Mars Exploration Rover Opportunity investigated plains at Meridiani Planum, where laminated sedimentary rocks are present. The Opportunity rover's Athena morphological investigation showed microstructures organized in intertwined filaments of microspherules: a texture we have also found on samples of terrestrial (biogenic) stromatolites and other microbialites. We performed a quantitative image analysis to compare images (n=45) of microbialites with the images (n=30) photographed by the rover (corresponding, approximately, to 25,000/15,000 microstructures). Contours were extracted and morphometric indexes were obtained: geometric and algorithmic complexities, entropy, tortuosity, minimum and maximum diameters. Terrestrial and Martian textures present a multifractal aspect. Mean values and confidence intervals from the Martian images overlapped perfectly with those from the terrestrial samples. The probability of this occurring by chance is $1/2^8$, less than p<0.004. Terrestrial abiogenic pseudostromatolites showed a simple fractal structure and different morphometric values from those of the terrestrial biogenic stromatolite images or Martian images with a less ordered texture (p<0.001). Our work shows the presumptive evidence of microbialites in the Martian outcroppings: i.e., the presence of unicellular life on the ancient Mars.

A Study on the Autonomous Navigation of Rovers for Mars Surface Exploration

  • Kim, Han-Dol;Kim, Byung-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.3-38
    • /
    • 2001
  • In the planetary surface exploration , micro-rovers or nano-rovers are very attractive choices for a surface exploration system providing mobility functions and other features required in the surface probe missions at small mass and relatively small cost. This paper surveys and summarizes the requirements for Mars exploration rovers in micro or nano scale and outlines the control concepts for navigation including the obstacle/hazard avoidance and the path planning. In this context, autonomous reaction capabilities are the key elements to control design in conjunction with the remote control schemes to deal with the significant signal propagation delays. Other navigation and control aspects such as the instrument fine positioning and the flip-over of the rovers are also briefly introduced. The current technical limitations of the micro- and nano-rovers are summarized.

  • PDF

Thermodynamic non-equilibrium and anisotropy in Mars atmosphere entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Mars exploration demands aerodynamic computations for a proper design of missions of spacecraft carrying instruments and astronauts to Mars. Both Computational Fluid Dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) method play a key role for this purpose. To the author's knowledge, the altitude separating the fields of applicability of CFD and DSMC in Mars atmosphere entry is not yet clearly defined. The limitations in using DSMC at low altitudes are due to technical limitations of the computer. The limitations in using CFD at high altitudes are due to thermodynamic non-equilibrium. Here, this problem is studied in Mars atmosphere entry, considering the Mars Pathfinder capsule in the altitude interval 40-80 km, by means of a DSMC code. Non-equilibrium is quantified by the relative differences between translational temperature and: rotational (θt-r), vibrational (θt-v), overall (θt-ov) temperatures, anisotropy is quantified by the relative difference between the translational temperature component along x and those along y (θx-y) and along z (θx-z). The results showed that θt-r, θt-v, θx-y, θx-z are almost equivalent. The altitude of 45 km should be the limit altitude for a proper use of a CFD code and the altitude of 40 km should be the limit altitude for a reasonable use of a DSMC code.

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration (우주 행성 광물 자원 탐사를 위한 지반 탐사 기술)

  • Ryu, Geun-U;Ryu, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.19-33
    • /
    • 2022
  • Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.

Space Rover Development and Domestic Technology (우주로버의 개발현황과 국내의 관련기술 현황)

  • Ahn, Seok-Min;Lee, Yung-Gyo;Kim, Sung-Phil;Kim, Tae-Sik;Moon, Sang-Man
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • One of the purposes of space exploration is to be able to utilize the unlimited natural resources in the universe. For this purpose, plans for lunar and mars bases have been proposed by leading nations. In order to construct bases and search for resources, it is necessary to employ and develop rovers for surface navigation and exploration. With proper knowledge about Lunar surface, technology for lunar rover development can be established without serious obstacles, since robot technology for rover development has been well prepared in Korea. In this paper, lunar rovers and mars rovers developed and planned by other countries as well as the current status of robot technology in Korea have been analyzed.

  • PDF