DOI QR코드

DOI QR Code

Opportunity Rover's image analysis: Microbialites on Mars?

  • Bianciardi, Giorgio (Dept. Medical Biotechnologies, University of Siena) ;
  • Rizzo, Vincenzo (National Research Council) ;
  • Cantasano, Nicola (National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Rende Research Unit.)
  • Received : 2014.07.08
  • Accepted : 2014.12.11
  • Published : 2014.12.30

Abstract

The Mars Exploration Rover Opportunity investigated plains at Meridiani Planum, where laminated sedimentary rocks are present. The Opportunity rover's Athena morphological investigation showed microstructures organized in intertwined filaments of microspherules: a texture we have also found on samples of terrestrial (biogenic) stromatolites and other microbialites. We performed a quantitative image analysis to compare images (n=45) of microbialites with the images (n=30) photographed by the rover (corresponding, approximately, to 25,000/15,000 microstructures). Contours were extracted and morphometric indexes were obtained: geometric and algorithmic complexities, entropy, tortuosity, minimum and maximum diameters. Terrestrial and Martian textures present a multifractal aspect. Mean values and confidence intervals from the Martian images overlapped perfectly with those from the terrestrial samples. The probability of this occurring by chance is $1/2^8$, less than p<0.004. Terrestrial abiogenic pseudostromatolites showed a simple fractal structure and different morphometric values from those of the terrestrial biogenic stromatolite images or Martian images with a less ordered texture (p<0.001). Our work shows the presumptive evidence of microbialites in the Martian outcroppings: i.e., the presence of unicellular life on the ancient Mars.

Keywords

References

  1. Squyres, S.W., Arvidson, R.E., Bell, J.F., Calef , F., Clark, B.C., Cohen, B.A., Crumpler, L.A., De Souza, P.A., Farrand, W.H., Gellert, R., Grant, J., Herkenoff, K.E., Hurowitz, J.A., Johnson, J.R., Jolliff, B.L., Knoll, A.H., Li, A.H., Mclennan, S.M., Ming, D.W., Mittlefehhldt, D.W., Parker, T.J., Paulsen, G., Rice, M.S., Ruff, S.W., Schroder, C., Yen, A.S. and Zacny, K., "Ancient impact and aqueous processes at Endavour Crater, Mars", Science, Vol. 336, 2012, pp. 570-576. DOI: 10.1126/science.1220476
  2. Grotzinger, J.P. and Knoll, A.H., "Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?", Annual Reviews Earth Planetary Science, Vol. 27, 1999, pp. 313-358. https://doi.org/10.1146/annurev.earth.27.1.313
  3. Lowe, D.R., "Stromatolites 3.400 - Myr old from the Archean of Western Australia", Nature, Vol. 284, 1980, pp. 441-443. https://doi.org/10.1038/284441a0
  4. Hofmann, H.J., Grey, K., Hickman, A.H. and Thorpe, R.I., "Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia", Geological Society of American Bulletin, Vol. 111, 1999, pp. 1256-1262. https://doi.org/10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2
  5. Hofmann, H.J., Archean stromatolites as microbial archives, In: Microbial Sediments, pp. 315-327, Springer-Verlag International Publisher Science, Amsterdam, The Netherlands, 2000.
  6. Allwood, A.C., Walter, R.C., Kamber, B.S., Marshal, C.P. and Burch, I.W., "Stromatolite reef from the Early Archean era of Australia", Nature, Vol. 414, 2006, pp. 714-718.
  7. Walter, R.W., Stromatolites, In: Development in sedimentology, 20, Elseiver Scientific Publishing Company, Amsterdam, The Netherlands, 1976.
  8. Aitken, J.D., "Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta", Journal of Sedimentary Petrology, Vol. 37, 1967, pp. 1163-1178.
  9. Riding, R., The nature of Stromatolites: 3,500 Million years of History and a Century of Research, In: Advances in Stromatolite Geobiology, Lecture Notes in Earth Sciences, Vol. 131, pp. 29-74, 2011 https://doi.org/10.1007/978-3-642-10415-2_3
  10. Riding, R., "Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites", Geologica Croatica, Vol. 61, No. 2-3, 2008, pp. 73-103.
  11. Grotzinger, J.P., "Cyclicity and paleoenvironmental dynamics, Rocknest platform, Northwest Canada", Geological Society of America Bulletin, Vol. 97, 1986, pp. 1208-1231. https://doi.org/10.1130/0016-7606(1986)97<1208:CAPDRP>2.0.CO;2
  12. Riding, R., "Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms", Sedimentology, Vol. 47, Suppl. 1, 2000, pp. 179-214. https://doi.org/10.1046/j.1365-3091.2000.00003.x
  13. Allwood, A.C., Burch, I.W., Rouchy, J.M. and Coleman, M., "Morphological Biosignatures in Gypsum: Diverse Formation Processes of Messinian (6.0 Ma) Gypsum Stromatolites", Astrobiology, Vol. 13, No.9, 2013, pp. 870-886. DOI: 10.1089/ast.2013.1021
  14. Riding, R., Microbial carbonates: processes and products in time and space, In: 17th International Sedimentological Congress, Fukuoka, Japan, Abstracts, Vol. A, No. 12, 2006.
  15. McKay, C.P. and Stoker, C.R., "The early environment and its evolution on Mars: implications for life", Reviews of Geophysics, Vol. 27, No. 2, 1989, pp. 189-214. https://doi.org/10.1029/RG027i002p00189
  16. Walter, M.R. and Des Marais, D.J., "Preservation of biological information in thermal spring deposits - developing a strategy for the search for fossil life on Mars ", Icarus, Vol. 101, 1993, pp. 129-143. https://doi.org/10.1006/icar.1993.1011
  17. Ellery, A., Wynn-Williams, D.D., Parnell, J., Edwards, H.G.M. and Dickensheets, D.L., "The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars", Journal of Raman Spectroscopy, Vol. 35, 2004, pp. 441-457. https://doi.org/10.1002/jrs.1189
  18. McKay, C.P., "Wet and cold thick atmosphere on early Mars", Journal de Physique France, Vol. 121, 2004, pp. 283-288. https://doi.org/10.1051/jp4:2004121020
  19. Jepsen, S.M., Priscu, J.C., Grimm, R.E. and Bullock, M.A., "The potential for Lithoautotrophic life on Mars: application to shallow interfacial Water Environments", Astrobiology, Vol. 7. No.2, 2007, pp. 342-354. https://doi.org/10.1089/ast.2007.0124
  20. Clarke, J.D. and Stocker, C.R., "Searching for stromatolites: the 3.4 ga Strelley Pool Formation (Pilbara region, Western Australia) as a Mars analogue", Icarus, Vol. 224, 2013, pp. 413-423. https://doi.org/10.1016/j.icarus.2013.02.006
  21. Rizzo, V. and Cantasano, N., "Possibile organosedimentary structures on Mars", International Journal of Astrobiology, Vol. 8, No. 4, 2009, pp. 267-280. https://doi.org/10.1017/S1473550409990152
  22. Rizzo, V. and Cantasano, N., "Textures on Mars: evidences of a biogenic environment", Memorie della Societa Astronomica Italiana, Vol. 82, No. 2, 2011, pp. 348-357.
  23. Wagstaff, K.L. and Corsetti, F.A., "An evaluation of information-theoretic methods for detecting structural microbial biosignatures", Astrobiology, Vol. 10, No. 4, 2010, pp. 363-379. DOI: 10.1089/ast.2008.0301.
  24. Squyres, S.W., Grotzinger, J., Arvidson, R.E., Bell, J.F., Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W., Herkenhoff, K.E., Johnson, J.R., Klingelhofer, G., Knoll, A.H., McLennan, S.M., McSween, H.Y., Morris, R.V., Rice Jr., J.W., Rieder, L. and Soderblom, L.A., "In Situ Evidence for an Ancient Aqueous Environment at Meridian Planum, Mars", Science, Vol. 36, No. 5702, 2004, pp. 1709-1714.
  25. Falkoner, K., Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons Ltd., 1990.
  26. Pitsianis, N., Bleris, G.L. and Argyrakis, P., "Information dimension in fractal structures", Physical Review B, Vol. 39, No. 10, 1989, pp. 7097-7100. https://doi.org/10.1103/PhysRevB.39.7097
  27. Kaspar, F. and Schuster, H.G., "Easily calculable measure for the complexity of spatiotemporal patterns", Physical Review A, Vol. 36, 1987, pp. 842-848. https://doi.org/10.1103/PhysRevA.36.842
  28. Hermann J. and Stanley H.E., "The fractal dimension of the minimum path in two and three dimensional percolation", Journal of Physics A, Vol. 21, 1988, pp. 829-833. https://doi.org/10.1088/0305-4470/21/17/003
  29. Bianciardi, G., Miracco, C., De Santi, M.M. and Luzi, P., "Differential diagnosis between mycosis fungoides and chronic dermatitis by fractal analysis", Journal of Dermatological Sciences, Vol. 33, 2003, pp. 184-186. https://doi.org/10.1016/j.jdermsci.2003.07.001
  30. Bianciardi, G., Tanganelli, I., Totangiancaspro, D., Brogi, M., Carducci, A. and De Santi, M.M., "Fractal Analysis of monocytes in Diabetes", Clinical Hemorheology and Microcirculation, Vol. 35, No. 1-2, 2006, pp. 269- 272.
  31. Bianciardi, G., Traversi, C., Cattaneo, R., De Felice, C., Monaco, A., Tosi, G., Parrini, S. and Latini, G., "Phase transition of the Microvascular Network. Architecture in Human Pathologies", Theoretical Biology Forum, Vol. 105, No. 1, 2012, pp. 37- 45.
  32. Bianciardi, G., Miracco, C., Lazzi, S. and Luzi, P., "Fractal analysis of Epithelial-Connective Tissue in Basal Cell Carcinoma of the skin", Current Bioinformatics, Vol. 8, 2013, pp. 357-361. https://doi.org/10.2174/1574893611308030011
  33. Bianciardi, G., Acampa, M., Lamberti, I., Sartini, S., Servi, M., Biagi, F., Bocchi, V., Hayek, J. and Pastorelli, M., "Microvascular abnormalities in Rett syndrome", Clinical Hemorheology and Microcirculation, Vol. 54, 2013, pp. 109-113. DOI: 10.3233/CH-131707
  34. Folk, R.L., Petrology of Sedimentary Rocks, Hemphill Publishing Company, Austin, Texas, 1980.
  35. Chafetz, H.S., "Marine peloids: A product of bacterially induced precipitation of calcite", Journal of Sedimentary Petrology, Vol. 56, 1986, pp. 812-817.
  36. Reid, R.P., Vissker, P.T., Decho, A., Stolz, J.K., Bebout, B.M.,Dupraz, C., Macintyre, I.G., Paerl, H.W., Pinchney, J.L., Prufert-Bebout, L., Steppe, T.F. and Des Marais, D.J., "The role of microbes in accretion, lamination and early lithification of modern marine stromatolites", Nature, Vol. 406, 2000, pp. 989-992. https://doi.org/10.1038/35023158
  37. Carr, M.H., The surface of Mars, Yale University Press, New Haven, 1981.
  38. Malin, M.C. and Carr, M.H., "Groundwater formation on Martian valleys", Nature, Vol. 397, 1999, pp. 589-591. https://doi.org/10.1038/17551
  39. McEwen, A.S., Hansen, C.J., Delamere, W.A., Eliason, E.M., Herkenhoff, K.E., Keszthelyi, L., Gulick, V.C., Kirk, R.L., Mellon, M.T., Grant, J.A., Thomas, N., Weitz, C.M.,Squyres, S.W., Bridges, N.T., Murchie, S.L., Seelos, F., Seelos, K., Okubo, C.H., Milazzo, M.P., Tornabene, L.L., Jaeger, W.L., Byrne, S., Russel, P.S., Griffes, J.L., Martinez-Alonso, S., Davatzes, A., Chuang, F.C., Thomson, B.J., Fishbaugh, K.E., Dundas, C.M., Kolb, K.J., Banks, M.E. and Wray, J.J., "A closer look at waterrelated geologic activity on Mars", Science, Vol. 317, 2007, pp. 1706-1709. https://doi.org/10.1126/science.1143987
  40. McKay, D.S., Gibson Jr., E. K. and Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, D.F., Maechling, C.R., Zare, R.N., "Search for past life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001", Science, Vol. 273, 1996, pp. 924-930. https://doi.org/10.1126/science.273.5277.924
  41. Di Gregorio, B.E., "Martian sheen: life on the rocks", New Scientists, Vol. 2747, 2010, pp. 40-43.
  42. Hofmann, H.J., "Stromatolites: characteristics and utility", Earth Science Review, Vol. 9, 1973, pp. 339-373. https://doi.org/10.1016/0012-8252(73)90002-0
  43. Gerdes, G., Structures left by modern microbial mats in their host sediments, in: Atlas of microbial mat features within the clastic rock record, Elseiver Scientific Publishing Company, Amsterdam, The Netherlands, 2007.
  44. Grotzinger, J.P., Beaty, D., Dromart, G., Gupta, S., Harris M., Hurowitz, J., Kocurek, G., McLennann, S., Milliken, R., Ori, G.G. and Suner, D., "Mars sedimentary Geology: Key concepts and outstanding questions", Astrobiology, Vol. 11. No. 1, pp. 2011, pp. 77-87. https://doi.org/10.1089/ast.2010.0571
  45. Brehm, U., Palinska, K.A. and Krumbein, W.E., "Laboratory cultures of calcifying biomicrospheres generate oids. A contribution to the origin of oolites", Notebooks on Geology, Maintenon Letters, No. 03, 2004, CG2004-L03.
  46. Reid, R.P., James, N.P., Macintyre, I.G., Dupraz, C.P. and Burne, R.V., "Shark Bay stromatolites: Microfabrics and reinterpretation of origins", Facies, Vol. 49, 2003, pp. 45-53.
  47. Grotzinger, J.P. and Rothman, D.H., "An abiotic model for stromatolite morhogenesis", Nature, Vol. 383, 1996, pp. 423-425. https://doi.org/10.1038/383423a0
  48. Awramik, S.M. and Gray, K., Stromatolites: Biogenicity, biosignatures and bioconfusion, in: Proceedings of SPIE, No. 5906, 2005, pp. 1-9.
  49. Schopf, J.W., Kudryavtsev, A.B., Czaja A.D. and Tripathi, A.D., "Evidences of Archean life: Stromatolites and microfossils", Precambrian Research, Vol. 158, 2007, pp. 141-155. https://doi.org/10.1016/j.precamres.2007.04.009
  50. Purdon, G. and Snelling, A., "Survey of Microbial Composition and Mechanisms of Living Stromatolites of the Bahamas and Australia: Developing Criteria to Determine the Biogenicity of Fossil Stromatolites", Answers in Genesis, Vol. 3, 2013, pp. 348-350.
  51. Bosak, T., Souza-Egipsy, V. and Newman, D.K., "A laboratory model of abiotic peloid formation", Geobiology, Vol. 2, 2004, pp. 189-198. https://doi.org/10.1111/j.1472-4677.2004.00031.x

Cited by

  1. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars vol.15, pp.9, 2015, https://doi.org/10.1089/ast.2015.1339