DOI QR코드

DOI QR Code

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration

우주 행성 광물 자원 탐사를 위한 지반 탐사 기술

  • Received : 2022.07.14
  • Accepted : 2022.08.20
  • Published : 2022.09.30

Abstract

Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.

우주 행성 지반 탐사 미션은 1970년대에 활발하게 이루어졌으나 1990~2000년대에는 예산 문제로 쇠퇴기를 맞았다. 그러나 미래에 지구 자원 고갈에 대비하고 헬륨-3 및 희토류와 같이 우주에는 풍부하지만 지구에는 부족한 자원을 탐사하기 위해서는 우주 자원 탐사는 필수적이다. 또한, 우주 기술 발전은 미래 산업 발전의 원동력이 된다. 따라서 우주 자원 탐사 및 활용을 위해 최근 10년 동안 우주 행성 탐사를 위한 선진국 간의 기술 경쟁이 다시 가속화되고 있다. 이 우주 행성 자원 탐사/채굴 및 기지 건설 미션을 위해서는 지반 탐사가 필요하며 현재까지 달에 대한 탐사 미션으로는 Apollo 미션과 LUNA 미션, Chang'E 미션 등이 있고 해당 미션에서 유인 및 로버를 활용한 무인 시추 미션을 수행하였다. 화성 미션으로는 Viking, Spirit/Opportunity, Phoenix, Perseverance 미션, 소행성 탐사 미션은 하야 부사(Hyabusa) 미션이 있었다. 본 논문에서는 현재까지 수행된 우주 행성 광물 자원 탐사 기술에 대해 서술하고 향후 우리나라의 기술과제에 대하여 서술하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220124-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

References

  1. Allton, J. H. (1989), "Catalog of Apollo Lunar Surface Geological Sampling Tools and Containers", NASA Lyndon B. Johnson Space Center.
  2. Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., Van Westrenen, W., Peraudeau, G., Jaumann, R., and Seboldt, W. (2012), "A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely Initial in Situ Resource Utilization (ISRU) Applications", Planetary and Space Science, Vol.74, No.1, pp.42-48. https://doi.org/10.1016/j.pss.2012.08.012
  3. Anttila, M. (2004), "Concept Study for the Subsurface Sampling System for the Pasteur Payload of the ExoMars Mission", Genesis, Vol.8, p.76.
  4. Arvidson, R. E., Bonitz, R. G., Robinson, M. L., Carsten, J. L., Volpe, R. A., Trebi-Ollennu, A., Mellon M. T., Chu P. C., Davis K. R., Wilson J. J., Shaw A. S, Greenberger R. N.. Siebach K. L, Stein T. C., Cull S. C., Goetz W., Morris R. V., Ming D. W., Keller H. U., Lemmon M. T., Sizemore H. G., and Mehta, M. (2009), "Results from the Mars Phoenix Lander Robotic Arm Experiment", Journal of Geophysical Research: Planets, Vol.114, No.E1.
  5. Backes, P. G., Norris, J. S., Powell, M. W., and Vona, M. A. (2004), "Multi-mission Activity Planning for Mars Lander and Rover Missions", In 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), Vol.2, No.887-886.
  6. Bar-Cohen, Y. and Zacny, K. (Eds.). (2009), "Drilling in Extreme Environments: Penetration and Sampling on Earth and Other Planets", John Wiley & Sons.
  7. Bell, J. F., Maki, J. N., Mehall, G. L., Ravine, M. A., Caplinger, M. A., Bailey, Z. J., Brylow S., Schaffner J. A., Kinch, M. B., Madsen, K. M., Winhold, A., Hayes, A. G., Corlies, P., T ate, C., Barrington, M., Cisneros, E., Jensen, E., Paris, K., Crawford, K., Rojas, C., Mehall, L., Joseph, J., Proton, J. B., Cluff, N., Deen, R. G., Betts, B., Cloutis, E., Coates, A. J., Colaprete, A., Edgett, K. S., Ehlmann, B. L., Fagents, S., Grotzinger, J. P., Hardgrove, C., Herkenhoff, K. E., Horgan, B., Jaumann, R., Johnson, J. R., Lemmon, M., Paar, G., Caballo-Perucha, M., Gupta, S., Traxler, C., Preusker, F., Rice, M. S., Robinson, M. S., Schmitz, N., Sullivan, R., and Wolff, M. J. (2021), "The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation", Space science reviews, Vol.217, No.1, pp.1-40.
  8. Benaroya, H. (2018), "Materials and ISRU. In Building Habitats on the Moon. Springer", Cham, pp.178-196.
  9. Bennett, N. J., Ellender, D., and Dempster, A. G. (2020), "Commercial Viability of Lunar In-situ Resource Utilization (ISRU)," Planetary and Space Science, Vol.182, pp.104842.
  10. Bonitz, R. G., Shiraishi, L., Robinson, M., Arvidson, R. E., Chu, P. C., Wilson, J. J., Davis K. R., Paulsen G., Kusack A. G., Archer D., and Smith, P. (2008), "NASA Mars 2007 Phoenix Lander Robotic Arm and Icy Soil Acquisition Device", Journal of Geophysical Research: Planets, Vol.113, No.E3.
  11. Carrier III, W. D., Johnson, S. W., Werner, R. A., and Schmidt, R. (1971), "Disturbance in Samples Recovered with the Apollo Core Tubes", In Lunar and Planetary Science Conference Proceedings, Vol.2, p.1959.
  12. Carrier III, W. David, and James K. Mitchell (1976), ""Geotechnical Engineering on the Moon." Lunar Science Inst.", Abstracts of Papers Presented at a Special Session of the Seventh Annual Lunar Science Conference on Utilization of Lunar Materials and Expertise for Large Scale Operations in Space.
  13. Chen, C., Quan, Q., Shi, X., Deng, Z., Tang, D., and Jiang, S. (2016), "Multi-state Autonomous Drilling for Lunar Exploration", Chinese Journal of Aeronautics, 29(5), 1397-1404. https://doi.org/10.1016/j.cja.2016.01.004
  14. Cristello, G. and Otero, L. D. (2022), "Development of Simulation Framework for Impact Analysis of Launch Delays on Lunar Base Station", In 2022 IEEE International Systems Conference (SysCon), pp.1-6.
  15. Cull, S. C., Arvidson, R. E., Catalano, J. G., Ming, D. W., Morris, R. V., Mellon, M. T., and Lemmon, M. (2010), "Concentrated perchlorate at the Mars Phoenix landing Site: Evidence for Thin Film Liquid Water on Mars", Geophysical Research Letters, Vol.37, No.22.
  16. Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., Hand, K., Goreva, Y., Herd, C. D. K., Hueso R., Liu, Y., Maki, J. N., Martinez, G., Moeller, R. C., Nelessen, A., Newman, C. E., Nunes, D., Ponce, A., Spanovich, N., Willis, P. A., Beegle, L. W., Bell III, J. F., Brown, J. A., Joel A, S. H.. Hurowitz, S. M., David, A., Paige, J. A., Rodriguez-Manfredi, M. S., and Wiens, R. C. (2020), "Mars 2020 Mission Overview", Space Science Reviews, Vol.216, No.8, pp.1-41. https://doi.org/10.1007/s11214-019-0619-5
  17. Farries, K. W., Visintin, P., Smith, S. T., and van Eyk, P. (2021), "Sintered or Melted Regolith for Lunar Construction: State-of-the-art Review and Future Research Directions", Construction and Building Materials, Vol.296, P.123627.
  18. Gorevan, S. P., Myrick, T., Davis, K., Chau, J. J., Bartlett, P., Mukherjee, S., Anderson, R., Squyres, S. W., Arvidson, R. E., Madsen, M. B., Bertelsen, P., Goetz, W., Binau, C. S., and Richter, L. (2003), "Rock Abrasion Tool: Mars Exploration Rover Mission", Journal of Geophysical Research: Planets, Vol.108, No.E12.
  19. Greer, C. J., Peters, J. A., Manahan, M. P., Cor, J. J., and Rattner, A. S. (2021), "Experimental Characterization of Lithium-carbon Dioxide Combustion in Batch Reactors for Powering Venus Landers", Acta Astronautica, Vol.181, pp.235-248. https://doi.org/10.1016/j.actaastro.2021.01.010
  20. Hashimoto, T., Hoshino, T., Tanaka, S., Otake, H., Otsuki, M., Wakabayashi, S., Morimoto, H., and Masuda, K. (2014), "Introduction to Japanese Exploration Study to the Moon", Acta Astronautica, Vol.104, No.2, pp.545-551. https://doi.org/10.1016/j.actaastro.2014.06.031
  21. Hawkins, L. (2021), "Artemis and Human Landing System Program Overview", In JANNAF 2021.
  22. Hwang, S., Kim, M., Choi, K.S., and Sim, H.S. (2021), "Review of Autonomous Flight Safety System for Next-generation Korea Space Launch Vehicle", Current Industrial and Technological Trends in Aerospace, Vol.19, No.2, pp.74-82.
  23. Indyk, S., Spring, J., Ford, S., Luczek, K., and Paulsen, G. (2018), "Operating the Rock Abrasion Tool (RAT) after Thirteen Years of an Originally Ninety Day Mission", In 2018 SpaceOps Conference, p.2322.
  24. Jayathilake, B. A. C. S., Ilankoon, I. M. S. K., and Dushyantha, M. N. P. (2022), "Assessment of Significant Geotechnical Parameters for Lunar Regolith Excavations", Acta Astronautica.
  25. Jin, H., Lee, J., Ryu, B. H., Shin, H.-S., and Kim, Y.-J. (2021), "The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering", Journal of the Korean Geotechnical Society, Vol.37, No.2, pp.5-17. https://doi.org/10.7843/KGS.2021.37.2.5
  26. Johnston, R. S. and Hull, W. E. (1975), "Apollo missions", Biomedical Results of Apollo, eds RS Johnston, LF Dietlein and C. Berry (Washington, DC: National Aeronautics and Space Administration), pp.9-40.
  27. Kawaguchi, J. I., Fujiwara, A., and Uesugi, T. (2008), "Hayabusa-Its Technology and Science Accomplishment Summary and Hayabusa-2", Acta Astronautica, Vol.62, No.10-11, pp.639-647. https://doi.org/10.1016/j.actaastro.2008.01.028
  28. Kim, K.J. (2022), "New Vision & Current Lunar ISRU Research Activities at KIGAM", Abstracts of the Korean Society for Aeronautical and Space Sciences Conference, pp.503-504.
  29. Kim, Y. J., Ryu, B. H., Jin, H., Lee, J., and Shin, H. S. (2021), "Microstructural, Mechanical, and Thermal Properties of Microwavesintered KLS-1 Lunar Regolith Simulant", Ceramics International, Vol.47, No.19, pp.26891-26897. https://doi.org/10.1016/j.ceramint.2021.06.098
  30. Knez, D. and Khalilidermani, M. (2021), "A Review of Different Aspects of Off-Earth Drilling", Energies, Vol.14, No.21, p.7351.
  31. Korea Institute of Construction Technology (2021), Final report, "Development of Environmental Simulator and Advanced Construction Technologies Over TRL6 in Extreme Conditions (VI)".
  32. Kubota, T., Hashimoto, T., Kawaguchi, J. I., Uo, M., and Shirakawa, K. I. (2006), "Guidance and Navigation of Hayabusa Spacecraft for Asteroid Exploration and Sample Return Mission", In 2006 SICE-ICASE International Joint Conference, pp.2793-2796.
  33. Kubota, T., Otsuki, M., Hashimoto, T., Bando, N., Yano, H., Uo, M., Shirakawa, K., and Kawaguchi, J. I. (2006), "Touchdown Dynamics for Sampling in Hayabusa Mission", In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, p.6539.
  34. Li, C., Hu, H., Yang, M. F., Pei, Z. Y., Zhou, Q., Ren, X., Liu, B., Liu, D., Zeng, X., Zhang, G., Zhang, H., Liu, J., Wang, Q., Deng, X., Xiao, C., Yao, Y., Xue, D., Zuo, W., Su, Y., Wen, W., and Ouyang, Z. (2022), "Characteristics of the Lunar Samples Returned by the Chang'E-5 Mission", National science review, Vol.9, No.2, p.188.
  35. Liang, J., Tao, L., Zhang, W., Tang, J., Pang, Y., and Jiang, S. (2022), "Analysis of the Lunar Regolith Sample Obstruction in the Chang'E-5 Drill and its Improvement", Advances in Space Research, Vol.69, No. , pp.2248-2258. https://doi.org/10.1016/j.asr.2021.12.004
  36. Lore, J., Gao, H., and Aydin, A. (2000), "Viscoelastic Thermal Stress in Cooling Basalt Flows", Journal of Geophysical Research: Solid Earth, Vol.105, No.B10, pp.23695-23709. https://doi.org/10.1029/2000JB900226
  37. Magnani, P. G., Re, E., Senese, S., Cherubini, G., and Olivieri, A. (2006), "Different Drill Tool Concepts", Acta Astronautica, Vol.59, No.8-11, pp.1014-1019. https://doi.org/10.1016/j.actaastro.2005.07.028
  38. Michalski, J. R., Onstott, T. C., Mojzsis, S. J., Mustard, J., Chan, Q. H., Niles, P. B., and Johnson, S. S. (2018), "The Martian Subsurface as a Potential Window into the Origin of Life", Nature Geoscience, Vol.11, No.1, pp.21-26. https://doi.org/10.1038/s41561-017-0015-2
  39. Ministry of Science and ICT, and National Research Foundation (2020), Technical report, "A Study on White Paper Publication on Korea Space Development in 2020", p.210.
  40. Moeller, R. C., Jandura, L., Rosette, K., Robinson, M., Samuels, J., Silverman, M., Brown, K., Duffy, E., Yazzie, A., Jens, E., Brockie, I., White, L., Goreva, Y., Zorn, T., Okon, A., Lin, J., Frost, M., Collins, C., Williams, J.B., Steltzner, A., Chen F., and Biesiadecki, J. (2021), "The Sampling and Caching Subsystem (SCS) for the Scientific Exploration of Jezero Crater by the Mars 2020 Perseverance rover", Space Science Reviews, Vol.217, No.1, pp.1-43. https://doi.org/10.1007/s11214-020-00772-w
  41. Musilova, M., Nunes, A., Kerber, S., Pouwels, C., Wanske, A., D'Angelo, J., Foing, B., and Rogers, H. (2020), "The Second EuroMoonMars IMA at HI-SEA Field Campaign: An Overview of The EMMIHS-II Analog Mission to the Moon," In European Planetary Science Congress, pEPSC2020-1020.
  42. Na, J.H., Lee, S.D., and Shin, H.S. (2022), "A Study for Generation of Artificial Lunar Topography Image Dataset Using a Deep Learning Based Style Transfer Technique," Tunnel and underground space, Vol.32, No.2, pp.131-143. https://doi.org/10.7474/TUS.2022.32.2.131
  43. Nam, H. J., Kim, S. K., Bae, I. H., Choi, Y. J., and Ko, J. H. (2019), "Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator", Korean Journal of Optics and Photonics, Vol.30, No.4, pp.154-158. https://doi.org/10.3807/KJOP.2019.30.4.154
  44. Park, S.J., Choi, Y.J., and Jeong, W.S. (2015), "The Conceptual Optical Design of Prototype Infrared Spectrometer for Korean Lunar Exploration", Abstracts of the Korean Society for Aeronautical and Space Sciences Conference, pp.1493-1496.
  45. Perko, H. A. (2007), "Geotechnical Techniques Used in Planetary Exploration", In GEO-Volution: The Evolution of Colorado's Geological and Geotechnical Engineering Practice, pp.109-119.
  46. Ryu, B. H., Wang, C. C., and Chang, I. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", Journal of Aerospace Engineering, Vol.31, No.1, pp.04017083.
  47. Saiki, T., Imamura, H., Arakawa, M., Wada, K., Takagi, Y., Hayakawa, M., Shirai, K., Yano, H., and Okamoto, C. (2017), "The Small Carry-on Impactor (SCI) and the Hayabusa2 Impact Experiment", Space Science Reviews, Vol.208, No.1, pp.165-186. https://doi.org/10.1007/s11214-016-0297-5
  48. Sandford, S. A. (2011), "The Power of Sample Return Missions-Stardust and Hayabusa", Proceedings of the International Astronomical Union, Vol.7, No.S280, pp.275-287. https://doi.org/10.1017/S174392131102504X
  49. Science and Technology Policy Institute (2019), Final report, "Promoting Strategies for Space Industry".
  50. Shi, X., Tang, D., Quan, Q., Jiang, S., Hou, X., and Deng, Z. (2013), "Development of a Drilling and Coring Test-bed for Lunar Subsurface Exploration", In 2013 IEEE International Conference on Robotics and Biomimetics, pp.2124-2129..
  51. Simmons, G. (1972), "On the Moon with Apollo 17: A Guidebook to Taurus-Littrow", National Aeronautics and Space Administration, Vol.101.
  52. Soffen, G. A. and Snyder, C. W. (1976), "The First Viking Mission to Mars", Science, Vol.193, No.4255, pp.759-766. https://doi.org/10.1126/science.193.4255.759
  53. Taylor, L. A. and Meek, T. T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", Journal of Aerospace Engineering, Vol.18, No.3, pp.188-196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
  54. Thomson, B. J., Bridges, N. T., Cohen, J., Hurowitz, J. A., Lennon, A., Paulsen, G., and Zacny, K. (2013), "Estimating rock compressive strength from Rock Abrasion Tool (RAT) grinds", Journal of Geophysical Research: Planets, Vol.118, No.6, pp.1233-1244. https://doi.org/10.1002/jgre.20061
  55. Tsou, P., Brownlee, D. E., Sandford, S. A., Horz, F., and Zolensky, M. E. (2003), "Wild 2 and Interstellar Sample Collection and Earth Return", Journal of Geophysical Research: Planets, Vol.108, No.E10.
  56. Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., and Nakazawa, S. (2013), "System Design of the Hayabusa 2-Asteroid Sample Return Mission to 1999 JU3", Acta Astronautica, Vol.91, pp.356-362. https://doi.org/10.1016/j.actaastro.2013.06.028
  57. VJ, O. "VIKING ENCOUNTER", Gas, Vol.39, p.41.
  58. Wang, S.C. and Han, J.T. (2016), "Experimental Study of Lunar Rover Wheel's Motion Performance on Korean Lunar Soil Simulant", Journal of the Korean Geotechnical Society, Vol. 32, No.11, pp. 97-108. https://doi.org/10.7843/KGS.2016.32.11.97
  59. Watanabe, S. I., Tsuda, Y., Yoshikawa, M., Tanaka, S., Saiki, T., and Nakazawa, S. (2017), "Hayabusa2 Mission Overview", Space Science Reviews, Vol.208, No.1, pp.3-16. https://doi.org/10.1007/s11214-017-0377-1
  60. X. Lacerda, M. (2021), "A Preliminary Systems Design on the NASA Lunar Modular Habitat with a Human-Autonomous Coordinated Operation: Design through the Integrated Product and Process Development Method," In Earth and Space 2021, pp.1033-1036.
  61. Yano, H., Kubota, T., Miyamoto, H., Okada, T., Scheeres, D., Takagi, Y., YOSHIDA K., ABE M., and Yoshikawa, M. (2006), "Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa", Science, Vol.312, No.5778, pp.1350-1353. https://doi.org/10.1126/science.1126164
  62. Zacny, K., Paulsen, G., McKay, C. P., Glass, B., Dave, A., Davila, A. F., Marinova M., Mellerowicz B., Heldmann J., Stoker C., Cabrol, N., Hedlund, M., and Craft, J. (2013), "Reaching 1 m Deep on Mars: the Icebreaker Drill", Astrobiology, Vol.13, No.12, pp.1166-1198. https://doi.org/10.1089/ast.2013.1038
  63. Zhang, T., Wang, B., Wei, H., Zhang, Y., Chao, C., Xu, K., Xilun, D., Xuyan, H., and Zhao, Z. (2021), "Review on Planetary Regolith-sampling Technology", Progress in Aerospace Sciences, Vol.127, p.100760.
  64. Zhao, D., Jiang, S., Tang, D., Hu, X., Hou, X., and Deng, Z. (2015), "The Application of CBN on the Lunar Rock Drill", In 5th International Conference on Advanced Engineering Materials and Technology, p.789.
  65. Zhao, L., Adamiak, K., and Mazumder, M. (2008), "Numerical and Experimental Studies of the Electrohydrodynamic Pump for Sampling System on Mars", In Proc., ESA Annual Meeting on Electrostatics pp.1-10.
  66. Zheng, Y., Mengfei, Y. A. N. G., Xiangjin, D. E. N. G., Shengyi, J. I. N., Jing, P. E. N. G., Yan, S. U., ... and Zhang, N. (2022), "Analysis of Chang'e-5 Lunar Core Drilling Process", Chinese Journal of Aeronautics.