• Title/Summary/Keyword: Markov parameter

Search Result 197, Processing Time 0.029 seconds

Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme (Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Kim, Byung-Sik;Yoon, Seok-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.383-392
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established. Therefore, uncertainty analysis are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an unexpected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

An extension of Markov chain models for estimating transition probabilities (추이확률의 추정을 위한 확장된 Markov Chain 모형)

  • 강정혁
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.27-42
    • /
    • 1993
  • Markov chain models can be used to predict the state of the system in the future. We extend the existing Markov chain models in two ways. For the stationary model, we propose a procedure that obtains the transition probabilities by appling the empirical Bayes method, in which the parameters of the prior distribution in the Bayes estimator are obtained on the collaternal micro data. For non-stationary model, we suggest a procedure that obtains a time-varying transition probabilities as a function of the exogenous variables. To illustrate the effectiveness of our extended models, the models are applied to the macro and micro time-series data generated from actual survey. Our stationary model yields reliable parameter values of the prior distribution. And our non-stationary model can predict the variable transition probabilities effectively.

  • PDF

A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting

  • Lee, Jiyoung;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • We combine the integer-valued GARCH(1, 1) model with a generalized regime-switching model to propose a dynamic count time series model. Our model adopts Markov-chains with time-varying dependent transition probabilities to model dynamic count time series called the generalized regime-switching integer-valued GARCH(1, 1) (GRS-INGARCH(1, 1)) models. We derive a recursive formula of the conditional probability of the regime in the Markov-chain given the past information, in terms of transition probabilities of the Markov-chain and the Poisson parameters of the INGARCH(1, 1) process. In addition, we also study the forecasting of the Poisson parameter as well as the cumulative impulse response function of the model, which is a measure for the persistence of volatility. A Monte-Carlo simulation is conducted to see the performances of volatility forecasting and behaviors of cumulative impulse response coefficients as well as conditional maximum likelihood estimation; consequently, a real data application is given.

The Probabilistic Analysis of Fatigue Damage Accumulation Behavior Using Markov Chain Model in CFRP Composites (Markov Chain Model을 이용한 CFRP 복합재료의 피로손상누적거동에 대한 확률적 해석)

  • Kim, Do-Sik;Kim, In-Bai;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1241-1250
    • /
    • 1996
  • The characteristics of fatigue cumulative damage and fatigue life of 8-harness satin woven CFRP composites with a circular hole under constant amplitude and 2-level block loading are estimated by Stochastic Makov chain model. It is found in this study that the fatigue damage accumulation behavior is very random and the fatigue damage is accumulated as two regions under constant amplitude fatigue loading. In constant amplitude fatigue loading the predicted mean number of cycles to a specified damage state by Markov chain model shows a good agreement with the test result. The predicted distribution of the fatigue cumulative damage by Markov chain model is similar to the test result. The fatigue life predictions under 2-level block loading by Markov chain model revised are good fitted to the test result more than by 2-parameter Weibull distribution function using percent failure rule.

A Study on the Parameter Estimation for the Bit Synchronization Using the Gauss-Markov Estimator (Gauss-Markov 추정기를 이용한 비트 동기화를 위한 파라미터 추정에 관한 연구)

  • Ryu, Heung-Gyoon;Ann, Sou-Guil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.8-13
    • /
    • 1989
  • The parameters of bipolar random square-wave signal process, amplitude and phase with unknown probability distribution are shown to be simultaneously estimated by using Gauss-Markov estimator so that transmitted digital data can be recovered under the additive Gaussinan noise environment. However, we see that the preprocessing stage using the correlator composed of the multiplier and the running integrator is needed to convert the received process into the sampled sequences and to obtain the observed data vectors, which can be used for Gauss-Markov estimation.

  • PDF

Studies on the Stochastic Generation of Long Term Runoff (1) (장기유출랑의 추계학적 모의 발생에 관한 연구 (I))

  • 이순혁;맹승진;박종국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.100-116
    • /
    • 1993
  • It is experienced fact that unreasonable design criterion and unsitable operation management for the agricultural structures including reservoirs based on short terms data of monthly flows have been brought about not only loss of lives, but also enormous property damage. For the solution of this point at issue, this study was conducted to simulate long series of synthetic monthly flows by multi-season first order Markov model with selection of best fitting frequency distribution and to make a comparison of statistical parameters between observed and synthetic flows of six watersheds in Yeong San and Seom Jin river systems. The results obtained through this study can be summarized as follows. 1.Both Gamma and two parameter lognormal distribution were found to be suitable ones for monthly flows in all watersheds by Kolmogorov-Smirnov test while those distributions were judged to be unfitness in Nam Pyeong of Yeong San and Song Jeong and Ab Rog watersheds of Seom Jin river systems in the $\chi$$^2$ goodness of fit test. 2.Most of the arithmetic mean values for synthetic monthly flows simulated by Gamma distribution are much closer to the results of the observed data than those of two parameter lognomal distribution in the applied watersheds. 3.Fluctuation for the coefficient of variation derived by Gamma distribution was shown in general as better agreement with the results of the observed data than that of two parameter lognormal distribution in the applied watersheds both in Yeong San and Seom Jin river systems. Especially, coefficients of variation calculated by Gamma distribution are seemed to be much closer to those of the observed data during July and August. 4.It can be concluded that synthetic monthly flows simulated by Gamma distribution are seemed to be much closer to the observed data than those by two parameter lognormal distribution in the applied watersheds. 5.It is to be desired that multi-season first order Markov model based on Gamma distribution which is confirmed as a good fitting one in this study would be compared with Harmonic synthetic model as a continuation follows.

  • PDF

Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model (강우-유출모형 매개변수의 최적화 및 불확실성 분석)

  • Moon, Young-Il;Kwon, Hyun-Han
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.723-726
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established, uncertainty analysis, therefore, are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an expected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

  • PDF

Analyze the parameter uncertainty of SURR model using Bayesian Markov Chain Monte Carlo method with informal likelihood functions

  • Duyen, Nguyen Thi;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.127-127
    • /
    • 2021
  • In order to estimate parameter uncertainty of hydrological models, the consideration of the likelihood functions which provide reliable parameters of model is necessary. In this study, the Bayesian Markov Chain Monte Carlo (MCMC) method with informal likelihood functions is used to analyze the uncertainty of parameters of the SURR model for estimating the hourly streamflow of Gunnam station of Imjin basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of parameters. Moreover, the performance of four informal likelihood functions (Nash-Sutcliffe efficiency, Normalized absolute error, Index of agreement, and Chiew-McMahon efficiency) on uncertainty of parameter is assessed. The indicators used to assess the uncertainty of the streamflow simulation were P-factor (percentage of observed streamflow included in the uncertainty interval) and R-factor (the average width of the uncertainty interval). The results showed that the sensitivities of parameters strongly depend on the likelihood functions and vary for different likelihood functions. The uncertainty bounds illustrated the slight differences from various likelihood functions. This study confirms the importance of the likelihood function selection in the application of Bayesian MCMC to the uncertainty assessment of the SURR model.

  • PDF

Development of Design Alternative Analysis Program Considering RAM Parameter and Cost (RAM 파라미터와 비용을 고려한 설계대안 분석 프로그램 개발)

  • Kim, Han-sol;Choi, Seong-Dae;Hur, Jang-wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Modern weapon systems are multifunctional, with capabilities for executing complex missions. However, they are required to be highly reliable, which increases their total cost of ownership. Because it is necessary to produce the best results within a limited budget, there is an increasing interest in development, acquisition, and maintenance costs. Consequently, there is a need for tools that calculate the lifecycle costs of weapons systems development to facilitate decision making. In this study, we propose a cost calculation function based on the Markov process simulator-a reliability, availability, and maintainability analysis tool developed by applying the Markov-Monte Carlo method-as an alternative to these requirements to facilitate decision-making in systems development.