• Title/Summary/Keyword: Markov network

Search Result 374, Processing Time 0.023 seconds

Survivability Evaluation Model in Wireless Sensor Network using Software Rejuvenation

  • Parvin, Sazia;Thein, Thandar;Kim, Dong-Seong;Park, Jong-Sou
    • Convergence Security Journal
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • The previous works in sensor networks security have focused on the aspect of confidentiality, authentication and integrity based on cryptographic primitives. There has been no prior work to assess the survivability in systematic way. Accordingly, this paper presents a survivability model of wireless sensor networks using software rejuvenation for dual adaptive cluster head. The survivability model has state transition to reflect status of real wireless sensor networks. In this paper, we only focus on a survivability model which is capable of describing cluster head compromise in the networks and able to switch over the redundant cluster head in order to increase the survivability of that cluster. Second, this paper presents how to enhance the survivability of sensor networks using software rejuvenation methodology for dual cluster head in wireless sensor network. We model and analyze each cluster as a stochastic process based on Semi Markov Process (SMP) and Discrete Time Markov Chain (DTMC). The proof of example scenarios and numerical analysis shows the feasibility of our approach.

  • PDF

Radio Resource Management Scheme for Heterogeneous Wireless Networks Based on Access Proportion Optimization

  • Shi, Zheng;Zhu, Qi
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.527-537
    • /
    • 2013
  • Improving resource utilization has been a hot issue in heterogeneous wireless networks (HWNs). This paper proposes a radio resource management (RRM) method based on access proportion optimization. By considering two or more wireless networks in overlapping regions, users in these regions must select one of the networks to access when they engage in calls. Hence, the proportion of service arrival rate that accesses each network in the overlapping region can be treated as an optimized factor for the performance analysis of HWNs. Moreover, this study considers user mobility as an important factor that affects the performance of HWNs, and it is reflected by the handoff rate. The objective of this study is to maximize the total throughput of HWNs by choosing the most appropriate factors. The total throughput of HWNs can be derived on the basis of a Markov model, which is determined by the handoff rate analysis and distribution of service arrival rate in each network. The objective problem can actually be expressed as an optimization problem. Considering the convexity of the objective function, the optimization problem can be solved using the subgradient approach. Finally, an RRM optimization scheme for HWNs is proposed. The simulation results show that the proposed scheme can effectively enhance the throughput of HWNs, i.e., improve the radio resource utilization.

A Campus Community-based Mobility Model for Routing in Opportunistic Networks

  • Pan, Daru;Fu, Min;Sun, Jiajia;Zou, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1034-1051
    • /
    • 2016
  • Mobility models are invaluable for determining the performance of routing protocols in opportunistic networks. The movement of nodes has a significant influence on the topological structure and data transmission in networks. In this paper, we propose a new mobility model called the campus-based community mobility model (CBCNM) that closely reflects the daily life pattern of students on a real campus. Consequent on a discovery that the pause time of nodes in their community follows a power law distribution, instead of a classical exponential distribution, we abstract the semi-Markov model from the movement of the campus nodes and analyze its rationality. Then, using the semi-Markov algorithm to switch the movement of the nodes between communities, we infer the steady-state probability of node distribution at random time points. We verified the proposed CBCNM via numerical simulations and compared all the parameters with real data in several aspects, including the nodes' contact and inter-contact times. The results obtained indicate that the CBCNM is highly adaptive to an actual campus scenario. Further, the model is shown to have better data transmission network performance than conventional models under various routing strategies.

A Backoff Scheme to Improve Throughput over IEEE 802.11 Wireless LANs (IEEE 802.11 무선 LAN에서 처리율 향상을 위한 백오프 방식)

  • 장길웅
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.217-223
    • /
    • 2004
  • This paper proposes a new backoff scheme to improve the throughput of stations over wireless local area networks. It is designed to carry out the proposed backoff scheme using information of basic service area, such as number of stations, in terms of the throughput. Basic idea of the proposed backoff scheme is that we change the contention window size for backoff time as collisions increase. We evaluate the performance of the proposed backoff scheme using Markov model analysis and compare it with the IEEE 802.11e backoff scheme. The numerical results indicate that the Proposed backoff scheme may offer better performance than the conventional backoff scheme in terms of the throughput.

TG-SPSR: A Systematic Targeted Password Attacking Model

  • Zhang, Mengli;Zhang, Qihui;Liu, Wenfen;Hu, Xuexian;Wei, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2674-2697
    • /
    • 2019
  • Identity authentication is a crucial line of defense for network security, and passwords are still the mainstream of identity authentication. So far trawling password attacking has been extensively studied, but the research related with personal information is always sporadic. Probabilistic context-free grammar (PCFG) and Markov chain-based models perform greatly well in trawling guessing. In this paper we propose a systematic targeted attacking model based on structure partition and string reorganization by migrating the above two models to targeted attacking, denoted as TG-SPSR. In structure partition phase, besides dividing passwords to basic structure similar to PCFG, we additionally define a trajectory-based keyboard pattern in the basic grammar and introduce index bits to accurately characterize the position of special characters. Moreover, we also construct a BiLSTM recurrent neural network classifier to characterize the behavior of password reuse and modification after defining nine kinds of modification rules. Extensive experimental results indicate that in online attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 275%, and respectively outperforms its foremost counterparts, Personal-PCFG, TarGuess-I, by about 70% and 19%; In offline attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 90%, outperforms Personal-PCFG and TarGuess-I by 85% and 30%, respectively.

Study on the Delineation of City-Regions Based on Functional Interdependence and Its Relationships with Urban Growth (기능적 상호작용에 따른 도시권 설정과 성장관계에 대한 연구)

  • Kim, Dohyeong;Woo, Myungje
    • Journal of Korea Planning Association
    • /
    • v.54 no.7
    • /
    • pp.5-23
    • /
    • 2019
  • The central government has implemented policies to strengthen the competitiveness of small and medium sized cities for balanced development at the national scale. However, since it is often difficult to enhance the competitiveness through partial projects of each jurisdiction, many local governments collaborate at the regional scale. This suggests that a regional approach is important for the management of small and medium sized cities. On the one hand, the concept of network city suggests that various functional networks can affect the growth of small and medium sized cities. Given this background, the purposes of this study are to delineate regional boundaries at national scale and identify their relations of growth by using functional network and Moran's I index. The study uses the Markov-chain model and cluster analysis to delineate the regions, and Moran's I is employed to identify the relations of growth. The results show that interactions between jurisdictions through networks could be crucial factors for growth of small and medium sized cities, while the networks based on passenger travel and freight movement have different implications. The results suggest that policy makers should not only consider local level investments, but also take the characteristics of networks between cities into account for achieving balanced development and developing regeneration policies.

Analyzing performance of time series classification using STFT and time series imaging algorithms

  • Sung-Kyu Hong;Sang-Chul Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • In this paper, instead of using recurrent neural network, we compare a classification performance of time series imaging algorithms using convolution neural network. There are traditional algorithms that imaging time series data (e.g. GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)) in TSC(Time Series Classification) community. Furthermore, we compare STFT(Short Time Fourier Transform) algorithm that can acquire spectrogram that visualize feature of voice data. We experiment CNN's performance by adjusting hyper parameters of imaging algorithms. When evaluate with GunPoint dataset in UCR archive, STFT(Short-Time Fourier transform) has higher accuracy than other algorithms. GAF has 98~99% accuracy either, but there is a disadvantage that size of image is massive.

A study about analysis of self-similar characteristics for the optimized design networks (Network 최적 설계를 위한 네트워크 트래픽의 self-similar 특성 분석에 관한 연구)

  • 이동철;김창호;황인수;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.267-271
    • /
    • 2000
  • Traffic analysis during past years used the Poisson distribution or Markov model, assuming an exponential distribution of packet queue arrival. Recent studies, however, have shown aperiodic and burst characteristics of network traffics. Such characteristics of data traffic enable the scalability of network, QoS, optimized design, when we analyze new traffic model having a self-similar characteristic. This paper analyzes the self-similar characteristics of a small-scale mixed traffic in a network simulation, the real network Traffic.

  • PDF

Analysis of self-similar characteristics in the networks (Network에서 트래픽의 self-similar 특성 분석)

  • 황인수;이동철;박기식;최삼길;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.263-267
    • /
    • 2000
  • Traffic analysis during past years used the Poisson distribution or Markov model, assuming an exponential distribution of packet queue arrival. Recent studies, however, have shown aperiodic and burst characteristics of network traffics Such characteristics of data traffic enable the scalability of network, QoS, optimized design, when we analyze new traffic model having a self-similar characteristic. This paper analyzes the self-similar characteristics of a small-scale mixed traffic in a network simulation, the real WAN delay time, TCP packet size, and the total network usage.

  • PDF

Delay characteristics and Throughput analysis on Network offered Multi-media service (멀티미디어 서비스를 제공하는 네트워크의 지연 특성과 처리율 분석)

  • 황인수;김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.289-295
    • /
    • 2000
  • Traffic analysis during past years used the Poisson distribution or Markov model, assuming an exponential distribution of packet queue arrival. Recent studies, however, have shown aperiodic and burst characteristics of network traffics. Such characteristics of data traffic enable the scalability of network, QoS, optimized design, when we analyze new traffic model having a self-similar characteristic. This paper analyzes the self-similar characteristics of a small-scale mixed traffic in a network simulation, the real WAN delay time, TCP packet size, and the total network usage.

  • PDF