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Abstract 
 

Mobility models are invaluable for determining the performance of routing protocols in 
opportunistic networks. The movement of nodes has a significant influence on the topological 
structure and data transmission in networks. In this paper, we propose a new mobility model 
called the campus-based community mobility model (CBCNM) that closely reflects the daily 
life pattern of students on a real campus. Consequent on a discovery that the pause time of 
nodes in their community follows a power law distribution, instead of a classical exponential 
distribution, we abstract the semi-Markov model from the movement of the campus nodes and 
analyze its rationality. Then, using the semi-Markov algorithm to switch the movement of the 
nodes between communities, we infer the steady-state probability of node distribution at 
random time points. We verified the proposed CBCNM via numerical simulations and 
compared all the parameters with real data in several aspects, including the nodes’ contact and 
inter-contact times. The results obtained indicate that the CBCNM is highly adaptive to an 
actual campus scenario. Further, the model is shown to have better data transmission network 
performance than conventional models under various routing strategies.  
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1. Introduction 

Opportunistic networks [1] are wireless mobile networks that are constructed entirely from 
users’ devices, which are carried by people, vehicles, or animals. Opportunistic networks 
differ from traditional ad hoc networks in several aspects: in these networks, network 
partitions and disconnections are very common and a fully connected path between source and 
destination is not guaranteed. As a consequence, routing protocols are unable to find a 
connected path to their destinations; instead, they exploit the contacts made by nodes to 
transmit messages.  They use the store, carry, and forward principle—in which data are stored 
locally on a device, carried as the user moves, and forwarded to the next hop when there is a 
chance. These approaches are used to cope with and exploit the characteristics of opportunistic 
networks, such as the mobility pattern of the nodes and the contact and inter-contact times. 
      A mobility model should accurately reflect the mobility patterns of the nodes in real-world 
scenarios, as this has a significant impact on the delivery of messages. The same routing 
algorithm may exhibit different performances for features such as packet delivery ratio, 
end-to-end delay, and overhead, under different mobility models. In this paper, we propose a 
campus mobility model that focuses on the daily life traces of students on a campus, and apply 
it to various routing strategies. The contributions made in this paper can be summarized as 
follows:  
 

1) We divide the mobility model of a campus into three sub-models according to the 
activities of students in different time segments. This activity was carried out 
following our discovery that the movements of the nodes are driven by the social 
relationships among them. 

2) We propose a semi-Markov model-based state-switching algorithm that we utilize to 
model the movements of nodes on campus according to the length of time the nodes 
stay in their respective communities, which obeys a power law [2] instead of a 
classical exponential distribution. 

3) We analyze the steady-state performance of the model and verify its feasibility in a 
campus environment. More specifically, we compare its results with real movement 
trace data from aspects such as node contact and inter-contact times, and show that 
the proposed CBCNM is highly adaptive to real traces in an actual campus scenario. 

4) We compare the CBCNM with other mobility models by applying them to various 
routing protocols in a campus scenario.  

The remainder of this paper is organized as follows. Section 2 discusses related work and 
briefly describes the current classification of mobility models. Section 3 outlines the proposed 
CBCNM for opportunistic networks. Section 4 discusses the experiments conducted and 
analyzes the results obtained. Section 5 concludes this paper. 

2. Related Work 
Mobility models are used to simulate actual human movement because such movement has an 
important impact on the network transmission mode and data communication efficiency. 
Because of the important role that mobility plays in opportunistic networks, studies geared 
towards understanding the mobility of nodes are actively being conducted. Another objective 
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is to establish mobility models that are both easy to handle and able to reproduce key features 
of real traces. Current mobility models can be classified into two main categories: individual 
mobility models and group mobility models. 

Individual mobility models deal primarily with the movements of independent nodes, which 
are completely independent of other nodes. In this case, the mobility models mainly depict the 
individual characteristics of the nodes. Examples of such models include random walk (RW) 
[3], random waypoint (RWP) [4], and random direction (RD) [5]. These models are simple 
and easy to build. However, their nodes are irregular and change sharply, as they may turn 
urgently and suddenly stop. Further, these models can present unrealistic movements and node 
distribution is non-uniform in the network. In fact, the actions these models simulate seldom 
occur in the real mobility of a human being. As a result, several modified RWP models have 
been proposed [6]. 

In group mobility models, nodes belonging to a group have similar movement 
characteristics, whereas nodes related to different groups have diverse mobility patterns. 
Typical group mobility models include CMM [8], HCMM [9] (and improved versions), 
reference point group mobility model (RPGM) [7], and community mobility model [10]. The 
main idea underlying these models is that the location, speed, and movement direction of a 
mobile node are affected by other nodes in the neighborhood. In recent years, social networks 
have been extensively studied. Researchers have also applied theoretical models to the 
mobility models of network nodes, such as the small world in motion (SWIM [11–13]) 
model—a simple mobility model that generates small worlds of mobile humans. The model is 
very simple to implement and very efficient in simulations. The mobility pattern of the nodes 
is based on a simple intuition of human mobility: people go more often to places that are close 
to their homes and where they can meet a lot of other people. 

Most of the mobility models presented above do not capture the social properties of human 
mobility or only model one aspect of human mobility. Observations of campus students show 
that their daily lives are regular—in general, they carry out activities in fixed locations, such as 
classrooms, dormitories, and libraries. At various times throughout the day, students have 
different opportunities or interests to go to other places. The truncated levy walk (TLW) model 
has shown that human intentions, rather than geographical artifacts, play a major role in the 
production of heavy-tail tendencies [14]. By utilizing the pattern of these movements 
messages can therefore be transmitted more efficiently. To the best of our knowledge, only a 
few models are available for studying the behaviors and customs of students on a campus. 
Motivated by this lack, we developed a new campus community mobility model for 
opportunistic networks that subsumes various types of sub-models, implements switching, and 
realistically reproduces the daily mobility pattern of students on a campus. 

3. The Campus Mobility Model 

3.1 Students’ Daily Activities Sub-models 
Classroom or library, dormitory, and outdoor activity points are the main places for students 
on campus to stay throughout the day. Thus, the three sub-models in our study are 
representative of the regularity of student node motility on campus. Figs. 1 and 2, constructed 
from a real dataset, depict the staying time of student nodes in various places. These 
distributions conform to actual school life. Moreover, the number of points of interest (POIs) 
distributed in the different places changes over time. Consequently, we primarily consider 
three kinds of circumstances and divide the campus mobility model into three sub-models 
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according to students’ social activities. The resulting sub-models are shown in Fig. 4. 

 
              Fig. 1. Staying time in sub-models               Fig. 2. Distribution of nodes in a day 
 
3.1.1 The learning sub-model 
The learning sub-model describes the learning activities of students on campus, including 
attending lectures in classrooms, reading and studying in libraries, and performing 
experiments in laboratories. These activities have the following common attributes. 
        1) They follow a normal distribution with an average of two hours. 
        2) They are fixed to a particular place with a defined number of nodes. 
From Fig. 2, it is clear that when a node is in the learning sub-model, a coordinate is assigned 
randomly because the place where it stays for a period of time obeys a Gaussian distribution.  
 
3.1.2 The dormitory sub-model 
The dormitory sub-model describes the  activities of students in their dormitories. Each 
student node on the map is assigned a fixed coordinate representing its current dormitory 
position. In the dormitory sub-model, two conditions are met: 
       1) Each node finds a path back to its dormitory position via the shortest path algorithm.  
       2) The staying time follows a Gaussian distribution and nodes do not leave the coordinate 
until they go to next sub-model. 
 
3.1.3 The outdoor activity sub-model 
The outdoor activity sub-model encapsulates after-school socializing activities. It divides 
student nodes into two types: outgoing students and introverted students. Outgoing students 
are more sociable and usually participate in social activities more frequently than introverted 
students. 

At the beginning of the simulation, every node is assigned a POI, which indicates whether it 
is a more popular place, such as a supermarket near the school or a cinema. Immediately after 
school, the node is assigned into a collective group for outdoor activities, and they can select 
walking, cycling, bus, or car as their means of travel and utilize the shortest path selection 
algorithm to move to the meeting spots on the map. 

3.2 Switching Over Between Sub-models 
3.2.1 The sub-models switching algorithm 

In this section, we examine the switching algorithm used with the above sub-models. A node’s 
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movement is regarded as switching of state between different sub-models and is modeled 
using a semi-Markov model. In addition, using the dormitory sub-model as an example, we are 
able to construct the chart depicted in Fig. 3 from an actual dataset, to further illustrate the 
distribution of the nodes’ staying times. The distribution shows that student nodes primarily 
remain in dormitories throughout a certain period of the day, which approximately obeys a 
power law distribution rather than a classical exponential distribution [23]. Consequently, we 
use the semi-Markov model to model the nodes’ movements instead of the 
non-continuous-time Markov model. The Markov renewal process is a two-dimensional (state 
and time) random process, whereas the semi-Markov process is a one-dimensional random 
process produced by the Markov process. In the continuous-time Markov process, the staying 
time of the nodes in each state obeys an exponential distribution with the property of 
memorylessness, so that any moment can be an updated point. In other words, the Markov 
property exists at every time point. However, in the semi-Markov process, the staying time of 
each state can be generally distributed, and therefore, except for the state-switching moment, 
not all moments are updated points; only those points that are updated have the Markov 
property.  
 

 
Fig. 3. Power law distribution 

 
Assume that {Tn, Xn: n ≥ 0}, where Tn represents the time of the n-th transition and Xn 
represents the spatial state in the opportunities network, S = {1, 2, 3, …, J}, and J is the 
maximum number of communities. Further, assume that the probability of transition from 
state Xn to Xn+1 is not related to previous state Xn-1; in other words, the node transition is 
memoryless in every state. Then, the random process Xn is a standard Markov chain.  

The associated homogeneous semi-Markov kernel Q is defined by Eq. (1) [15]: 
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where pij is the transition probability from state i to state j, P = [pij] is the transition probability 
matrix of the embedded Markov chain, and Hij is the staying time distribution of the waiting 
time when it switches from sate i to state j: 
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Consequently, we can give the definition 
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as the probability distribution of the staying time in state i in a time t, then 
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Assuming that time-homogeneous semi-Markov processes are defined as X = (Xt, t ≥ 0), the 
switching probabilities can be defined as in Eq. (5): 
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where { j  ifor   0, 
j  ifor   1,   ≠

==ijδ . 
 
3.2.2 Steady-state analysis model 
In this subsection, we address the steady-state properties of the campus mobility model. 

Before we can obtain the steady-state probability distribution ][ k
iφ of a node, we first need to 

calculate two parameter matrices: transition probability matrix kP and staying time 

probability distribution matrix )(tDk
i . 

As stated above, a node may stay in a community or move to other communities with a 
corresponding probability. We divide the activities into three periods of time, specifically, T = 
{T1, T2, T3}, where T1 represents the time spent sleeping, T2 represents the time spent in a 
classroom, and T3 denotes the time spent on outgoing activities. State switching occurs when a 
node reaches the end time of any of these periods. Fig. 4 shows the state switching of the 
proposed model with corresponding probabilities, and Fig. 5 gives a detailed flowchart for the 
switching process among the sub-models. The switching process imitates the true daily life 
condition of the students with social bonds. The probabilities of all the activities are calculated 
via the semi-Markov chain switching probability. The choice of the means of transportation is 
based on the type of students—i.e., whether introverted or extroverted. 
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Fig. 4. Moving state transition probability of node k in the Markov model 

 

 
 

Fig. 5. Campus community model flowchart  
 
If we assume that the Markov chain transition probability matrix of node k is represented as
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Further, for any ji ≠ , the switching probability for node k transferring from communi
ty i to community j is calculated using Eq. (7): 
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At this point, the staying time of node k is not considered during the calculation of transition 
probability matrix  kP . We assume that the length of time that node k spends in any state 
obeys a Gaussian distribution defined by Eq. (8): 
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The average staying time of j × 1 dimensions of the vector is  
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Consequently, we obtain the steady-state transition probability ],,,,[  J321
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Therefore, the semi-Markov chain of node k among the three states in Fig. 4 is 
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From Eq. (11), we find that 
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Thus, the steady-state probability distribution of nodes in an opportunistic network is given by 
 

∑∑
==

=== J

i

J

i

k
i

1

k
i

k
i

k
i

k
i

1

k
i

k
i

k
i

k
ik

i

 
 

 d

 d  ][  
πµ

πµ

π

πφφ

                                     (13) 

where ][ k
iφ  is the steady-state probability distribution of node k in the community at any time. 

Finally, we obtain the steady-state probability distribution of node k in three communities at 
any time: 
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This corresponds to the long-term distribution of node k in the network. Through analysis of 
the steady-state model of the mobile nodes in the network, we can estimate the distribution of 
student density in all communities. 

4. Simulations and Performance Analysis 

4.1 Simulation Assessment Parameter 
In the wireless network design and simulation process, choosing the most appropriate 
assessment parameter is essential. Contact duration is the time interval in which two nodes are 
within radio range of each other, and inter-contact times define the frequency and the 
probability of being in contact with the recipient of a packet or a potential carrier in a given 
time period. These two parameters are commonly used to evaluate mobility models. A long 
contact duration implies that a large amount of data can be transferred (high throughput) and 
numerous inter-contact times imply more forwarding opportunities (short delays). 
Consequently, we used these parameters to evaluate the performance of the proposed model.  
 
Definition: The complementary cumulative distribution function (CCDF) of a node’s contact 
duration and inter-contact times is given as follows:  
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Let t represent contact duration or inter-contact time, and N represent the number of t’s in the 
datasets, where ti (i = 1, 2, 3, …, N) is the ith contact duration or inter-contact time in the 
datasets. Thus, the sum of t being greater than the constant T is given by 

              
Tnum >=∑

=
ti

N

1i
  where,1  

                                                (15) 

Consequently, the CCDF of a node’s contact duration and inter-contact times is given by Eq. 
(16):  

               
0T  where,

N
num  T)P(t  )( ≥=>=TP

 ,                             (16) 

where P(T) is the probability that the value of the node’s contact or inter-contact times is 
greater than a certain constant T in the datasets. 

4.2 Experimental Results 
In our experiments, we used the opportunistic network environment (ONE) [16] to simulate 
the proposed mobility model and an open source GIS program, called Open JUMP [17], to edit 
and convert the maps. 

Table 1. Parameter settings 
Parameter Value 

Simulation time (s) 43200 

World size (m × m) 4500 × 3400 

Communication method Bluetooth 

Node speed (m•s−1) 0.5–5 

Transmission range (m) 10 

Transmission rate (kbit•s-1) 250 

Message size (kB) 500–1000 

Message generation interval (s)  25–35 

Class duration (s) 2400 

Sleep duration (s) 14400 

Number of nodes in a group 150 

TTL0: Time-to-live (s) 18000 

 

The basic variables used in the construction of the simulation environment were initialized in 
accordance with the proposed CBCNM (Section 3). We used the ONE simulation platform [16] 
for network analysis with epidemic routing as the routing protocol, and Open JUMP [17] to 
edit and convert the maps. The parameter settings used are displayed in Table 1.  
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The nodes of outgoing students have a greater chance than those of introverted students to 
choose outside activities. Among them, the state transition probability matrix of every group is 

initiated as 
















0.1  8.0  1.0
0.1  1.0  8.0
0.1  8.0  1.0

. 
Fig. 6 depicts the moving states of nodes for various time periods and probabilities in the 

simulation. The various student nodes in the sub-models are marked with different colors. A 
node is identified as an irregular node if it appears in an inappropriate area at a certain time; for 
example, any node that appears on a playground during the study period. As can be seen, most 
of the nodes have regular mobility, with only a few wandering into inappropriate sub-models 
throughout the day.  
 

   
   

    (a)                                                                                      

 
                                                                       (b)                                    
Fig. 6. States of the nodes in our simulation: (a) initialization, (b) nodes move from dorm to classroom 

with a large probability. 
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For comparison, we simulated an RWP on a simulation area of the same size. The moving 
speed and pause time were set in the ranges 1–5 m/s and 1–800 s, respectively, and were both 
uniformly distributed. We used two experimental datasets gathered by the CRAWDAD 
Project [18] in our evaluation, and compared the traces produced by Cambridge and Infocom 
06. The performances of four mobility models—the proposed CBCNM, Cambridge, 
Infocom06, and RWP—are discussed and analyzed below. 
 

  
Fig. 7. Contact durations distribution            Fig. 8. Inter-contact times distribution    

Fig. 7 shows the respective CCDF for Infocom 06, Cambridge, RWP, and Campus. As shown 
in the figure, contact duration approximately follows a power law distribution in log-log 
coordinates in the real dataset, with power law characteristics. The contact time between nodes 
in RWP is less than those in Campus, and there is no contact between 102 s and 104 s in RWP. 
This is because the RWP model is a synthesis model—node movement has a significant 
amount of randomness. As a result, RWP does not adequately depict social properties. In 
contrast, the Campus model is similar to the real dataset and adequately shows social 
attributes. 

Fig. 8 depicts the CCDF of inter-contact times under the log-log coordinates in datasets. 
The traces of the campus model are approximately the same as the given real traces. The 
probability distributions of inter-contact times in RWP, Infocom 06, and Cambridge are more 
evenly distributed, while the interval of nodes encountered in these models are relatively long, 
especially in Infocom 06 and Cambridge, which is as much as 105 s, and results in fewer short 
contact intervals. Conversely, in the Campus model, there are shorter contact intervals and 
inter-contact times in the range 0–1000 s account for approximately 70%. For Infocom 06 and 
Cambridge inter-contact times account for approximately 90%. 

    
 

        Fig. 9.  Contacts per hour        Fig. 10. Distribution of node inter-contact times
      for various state transition probability matrices 
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Fig. 9 shows the number of contacts per hour for all nodes. As can be seen in the figure, the 
number of contacts among all nodes in the Campus model varies at different time periods in 
every hour. During the first four hours, the number of contacts among nodes is small because 
the nodes are sleeping and so there are fewer opportunities for contact. Over the subsequent 
four hours, the number of contacts between nodes progressively increases, and eventually 
reaches a maximum of 5,000 contacts. This is because the nodes awake following a night of 
sleep, at which point state switching occurs, along with frequent contact between nodes. In 
addition, there is a rest period after each 40 minutes of lesson, which further helps to increase 
the number of contacts between nodes. Similarly, the number of contacts is also large for the 
last two hours. In contrast, the number of contacts remains the same in different time periods in 
the RWP model. The figure shows that the Campus model changes in accordance with the time 
period between the different nodes, which is consistent with the corresponding activities 
associated with the work schedules of students and teachers on an actual campus. 
 

  
Fig. 11.  Campus model                                     Fig. 12.  RWP model 

 
Figs. 11 and 12 show the total number of contacts for a single mobile node and the number for 
different nodes, respectively. As can be seen, in the RWP model, the mobile node is random 
such that the two kinds of numbers discussed above are relatively homogeneous and low as 
well. Conversely, in the Campus model, there are more contacts between the same nodes, 
which lead to a small number of contacts between different nodes. The result is consistent with 
the actual movements of students on campus, where three different communities exist, and 
nodes in the same community make contact with each other more frequently than those staying 
in different communities. 

To show the difference more clearly, we can utilize another set of state transition probability 
matrices: 

 Let Group A = 
















0  9.0  1.0
0.1  0  9.0
0.1  9.0  0

, and only consider the switching between different communities

（Pii = 0） Group B =
















0.1  8.0  1.0
0.1  1.0  8.0
0.1  8.0  1.0

, as shown in Fig. 9. 
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Fig. 10 gives the CCDF of the distribution of node inter-contact times under various state 
transition probability matrixes. As shown in Fig. 7, the encounter intervals between nodes in 
group B are greater than those in group A.  This is because the nodes in group B tend to move to 
more regions than those in group A. A node gets more opportunities to encounter others if it 
moves around one community because of the lower meet time interval.  

As a result, the proposed Campus model can analyze the social characteristics of student 
nodes on an actual campus. 

4.3 Routing Protocol Performance 
In this section, we discuss the influence of  campus community mobility models on the routing 
performance of classical routing algorithms in opportunistic networks. To evaluate the 
performance, we used several mobility models—the RWP model, the campus community 
model (Campus), and the SWIM model—then compared their performances by testing the 
data transmission performance with four kinds of routing: Epidemic [19], Spray and Wait [20], 
Prophet [21], and First Contact [22]. We used Delivered Ratio, Aborted Ratio, Latency 
Average, Overhead Ratio, and Average Buffer time as the main parameters in our evaluation. 

From Fig. 13, it is clear that different mobility models influence the routing algorithms 
differently. The figure shows that the Campus model has the highest Delivered Ratio, 
especially for the Spray and Wait routing algorithm, with a value approximately 4.9 times that 
of RWP and 2.5 times that of SWIM. The Campus model also has the highest Delivered Ratio 
for the other three routing algorithms. Because RWP is a random mobility model in which 
nodes move without any pattern, its nodes have only a low possibility of meeting each other. 
By contrast, the Campus model reflects the actual behaviors of students and follows the three 
movement sub-models inside the community map; consequently, its nodes have a greater 
probability of meeting and transferring messages. Moreover, compared to the SWIM model, 
the Campus model has a higher Delivered Ratio, and has the better capability to transfer data. 
From these analyses we can conclude that the movement model has a significant impact on 
Delivered Ratio. 

Fig. 14 shows the Aborted Ratio for each mobility model with the various routing 
algorithms. The figure shows that the Campus model is the best model as it has the lowest 
Aborted Ratio. With the Spray and Wait routing algorithm, the Aborted Ratio of the Campus 
model is close to 25.69% that of the SWIM and 24.52% that of the RWP models. With the 
First Contact routing algorithm, its Aborted Ratio is 18.14% that of the RWP and 19.52% that 
of the SWIM model. The Aborted Ratio results reflect broken links and nodes’ out of 
communication range event occurrences. The lower the Aborted Ratio the greater is the 
probability that messages will reach the destination nodes. Fig. 14 shows that the mobility 
models have a significant impact on the Aborted Ratio with various routing algorithms. 

                 
     Fig. 13. Delivered Ratio                                           Fig. 14.  Aborted Ratio 
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Figs. 15, 16, and 17 show the relationship between the mobility models and Buffer Time 
Average, Latency Average, and Overhead Ratio. As can be seen, the Campus model has a 
better network performance than the RWP and SWIM models. The Latency Average indicates 
the status of consumption of the room in the buffer. The shorter the Buffer Time Average, the 
more room is in the buffer and the greater the chance to transfer messages. Fig. 15 shows that 
the Campus model has a shorter Buffer Time Average than the other two routing models, but is 
marginally higher with the Spray and Wait algorithm. Thus, it is clear that using the 
appropriate routing algorithm is important in an opportunistic network. Fig. 16 shows that the 
mobility model influences the Latency Average under different routing algorithms. In this 
scenario, the Campus model value is lower than that of the RWP model. Fig. 17 shows that the 
routing model also influences the routing overhead; however, the Prophet and First Contact 
routing algorithms are not significantly affected. 

  

         
 

Fig. 15. Buffer Time Average 
 
 

 
 

Fig. 16. Latency Average 
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  Fig. 17. Overhead Ratio 

5  Conclusions 
Mobility models are important in the research and analysis of routing protocols in 
opportunistic networks. In this paper, we proposed a campus community mobility model that 
simulates the daily life of students on a campus. The proposed model incorporates three 
different sub-models to capture the mobility characteristics in a specific campus environment, 
and model actual student mobility on campus. Consequently, it is able to reflect the unique 
aspects of campus life, whereas most conventional models cannot. We also showed that the 
proposed model is closer to the actual traces of data gathered from actual devices carried by 
students and have a better power law feature for the contact duration and inter-contact times of 
the nodes. Compared with the RWP model, the proposed mobility model better reflects the 
sociality of node mobility under the social environment of a campus. Finally, we also analyzed 
the influence of the campus-based community movement model on routing performance in 
opportunistic networks and showed that it results in better network performance than other 
models. We plan to extend the proposed model to other aspects of life, such as urban traffic, 
which can advance the opportunity for network research.  
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