• Title/Summary/Keyword: Markov channel

Search Result 142, Processing Time 0.019 seconds

Performance Analysis of Wireless Communication System with FSMC Model in Nakagami-m Fading Channel (Nakagami-m 페이딩 채널에서 FSMC 모델에 의한 무선 통신시스템의 성능 분석)

  • 조용범;노재성;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1010-1019
    • /
    • 2004
  • In this paper, we represent Nakagami-m fading channel as finite-State Markov Channel (FSMC) and analyze the performance of wireless communication system with varying the fading channel condition. In FSMC model, the received signal's SNR is divided into finite intervals and these intervals are formed into Markov chain states. Each state is modeled by a BSC and the transition probability is dependent upon the physical characterization of the channel. The steady state probability and average symbol error rate of each state and transition probability are derived by numerical analysis and FSMC model is formed with these values. We found that various fading channels can be represented with FSMC by changing state transition index. In fast fading environment in which state transition index is large, the channel can be viewed as i.i.d. channel and on the contrary, in slow fading channel where state transition index is small, the channel can be represented by simple FSMC model in which transitions occur between just adjacent states. And we applied the proposed FSMC model to analyze the coding gain of random error correcting code on various fading channels via computer simulation.

Performance Analysis of Channel Error Probability using Markov Model for SCTP Protocol

  • Shinn, Byung-Cheol;Feng, Bai;Khongorzul, Dashdondov
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.134-139
    • /
    • 2008
  • In this paper, we propose an analysis model for the performance of channel error probability in Stream Control Transmission Protocol (SCTP) using Markov model. In this model it is assumed that the compressor and decompressor work in Unidirectional Mode. And the average throughput of SCTP protocol is obtained by finding the throughputs of when the initial channel state is good or bad.

Two-Dimensional POMDP-Based Opportunistic Spectrum Access in Time-Varying Environment with Fading Channels

  • Wang, Yumeng;Xu, Yuhua;Shen, Liang;Xu, Chenglong;Cheng, Yunpeng
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.217-226
    • /
    • 2014
  • In this research, we study the problem of opportunistic spectrum access (OSA) in a time-varying environment with fading channels, where the channel state is characterized by both channel quality and the occupancy of primary users (PUs). First, a finite-state Markov channel model is introduced to represent a fading channel. Second, by probing channel quality and exploring the activities of PUs jointly, a two-dimensional partially observable Markov decision process framework is proposed for OSA. In addition, a greedy strategy is designed, where a secondary user selects a channel that has the best-expected data transmission rate to maximize the instantaneous reward in the current slot. Compared with the optimal strategy that considers future reward, the greedy strategy brings low complexity and relatively ideal performance. Meanwhile, the spectrum sensing error that causes the collision between a PU and a secondary user (SU) is also discussed. Furthermore, we analyze the multiuser situation in which the proposed single-user strategy is adopted by every SU compared with the previous one. By observing the simulation results, the proposed strategy attains a larger throughput than the previous works under various parameter configurations.

On the Analysis of DS/CDMA Multi-hop Packet Radio Network with Auxiliary Markov Transient Matrix. (보조 Markov 천이행렬을 이용한 DS/CDMA 다중도약 패킷무선망 분석)

  • 이정재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.805-814
    • /
    • 1994
  • In this paper, we introduce a new method which is available for analyzing the throughput of the packet radio network by using the auxiliary Markov transient matrix with a failure state and a success state. And we consider the effect of symbol error for the network state(X, R) consisted of the number of transmitting PRU X and receiving PRU R. We examine the packet radio network of a continuous time Markov chain model, and the direct sequence binary phase shift keying CDMA radio channel with hard decision Viterbi decoding and bit-by-bit changing spreading code. For the unslotted distributed multi-hop packet radio network, we assume that the packet error due to a symbol error of radio channel has Poisson process, and the time period of an error occurrence is exponentially distributed. Through the throughputs which are found as a function of radio channel parameters, such as the received signal to noise ratio and chips of spreading code per symbol, and of network parameters, such as the number of PRU and offered traffic rate, it is shown that this composite analysis enables us to combine the Markovian packet radio network model with a coded DS/BPSK CDMA radio channel.

  • PDF

Analytical Study of the Impact of the Mobility Node on the Multi-channel MAC Coordination Scheme of the IEEE 1609.4 Standard

  • Perdana, Doan;Cheng, Ray-Guang;Sari, Riri Fitri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.61-77
    • /
    • 2017
  • The most challenging issues in the multi-channel MAC of the IEEE 1609.4 standard is how to handle the dynamic vehicular traffic condition with a high mobility, dynamic topology, and a trajectory change. Therefore, dynamic channel coordination schemes between CCH and SCH are required to provide the proper bandwidth for CCH/SCH intervals and to improve the quality of service (QoS). In this paper, we use a Markov model to optimize the interval based on the dynamic vehicular traffic condition with high mobility nodes in the multi-channel MAC of the IEEE 1609.4 standard. We evaluate the performance of the three-dimensional Markov chain based on the Poisson distribution for the node distribution and velocity. We also evaluate the additive white Gaussian noise (AWGN) effect for the multi-channel MAC coordination scheme of the IEEE 1609.4 standard. The result of simulation proves that the performance of the dynamic channel coordination scheme is affected by the high node mobility and the AWGN. In this research, we evaluate the model analytically for the average delay on CCHs and SCHs and also the saturated throughput on SCHs.

A Novel Spectrum Allocation Strategy with Channel Bonding and Channel Reservation

  • Jin, Shunfu;Yao, Xinghua;Ma, Zhanyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4034-4053
    • /
    • 2015
  • In order to meet various requirements for transmission quality of both primary users (PUs) and secondary users (SUs) in cognitive radio networks, we introduce a channel bonding mechanism for PUs and a channel reservation mechanism for SUs, then we propose a novel spectrum allocation strategy. Taking into account the mistake detection and false alarm due to imperfect channel sensing, we establish a three-dimensional Markov chain to model the stochastic process of the proposed strategy. Using the method of matrix geometric solution, we derive the performance measures in terms of interference rate of PU packets, average delay and throughput of SU packets. Moreover, we investigate the influence of the number of the reserved (resp. licensed) channels on the system performance with numerical experiments. Finally, to optimize the proposed strategy socially, we provide a charging policy for SU packets.

An Energy-Efficient Transmission Strategy for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 전송 방안에 관한 연구)

  • Phan, Van Ca;Kim, Jeong-Geun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2009
  • In this work we propose an energy-efficient transmission strategy for wireless sensor networks that operate in a strict energy-constrained environment. Our transmission algorithm consists of two components: a binary-decision based transmission and a channel-aware backoff adjustment. In the binary-decision based transmission, we obtain the optimum threshold for successful transmission via Markov decision process (MDP) formulation. A channel-aware backoff adjustment, the second component of our proposal, is introduced to favor sensor nodes seeing better channel in terms of transmission priority. Extensive simulations are performed to verify the performance of our proposal over fading wireless channels.

  • PDF

Effect of First and Second Order Channel Statistics on Queueing Performance (채널의 1차 2차 통계적 특성이 큐의 성능에 미치는 영향)

  • Kim, Young-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.288-291
    • /
    • 2002
  • We characterize multipath fading channel dynamics at the packet level and analyze the corresponding data queueing performance in various environments. We identify the similarity between wire-line queueing analysis and wireless network per-formance analysis. The second order channel statistics, i.e. channel power spectrum, is fecund to play an important role in the modeling of multipath fading channels. However, it is identified that the first order statistics, i.e. channel CDF also has significant impact on queueing performance. We use a special Markov chain, so-called CMPP, throughout this paper.

Efficient Channel Assignment Scheme Based on Finite Projective Plane Theory

  • Chen, Chi-Chung;Su, Ing-Jiunn;Liao, Chien-Hsing;Woo, Tai-Kuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.628-646
    • /
    • 2016
  • This paper proposes a novel channel assignment scheme that is based on finite projective plane (FPP) theory. The proposed scheme involves using a Markov chain model to allocate N channels to N users through intermixed channel group arrangements, particularly when channel resources are idle because of inefficient use. The intermixed FPP-based channel group arrangements successfully related Markov chain modeling to punch through ratio formulations proposed in this study, ensuring fair resource use among users. The simulation results for the proposed FPP scheme clearly revealed that the defined throughput increased, particularly under light traffic load conditions. Nevertheless, if the proposed scheme is combined with successive interference cancellation techniques, considerably higher throughput is predicted, even under heavy traffic load conditions.

Queueing Performance Analysis of CDF-Based Scheduling over Markov Fading Channels

  • Kim, Yoora
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1240-1243
    • /
    • 2016
  • In this paper, we analyze the queueing performance of cumulative distribution function (CDF)-based opportunistic scheduling over Nakagami-m Markov fading channels. We derive the formula for the average queueing delay and the queue length distribution by constructing a two-dimensional Markov chain. Using our formula, we investigate the queueing performance for various fading parameters.