• Title/Summary/Keyword: Markov chain Monte Carlo algorithm

Search Result 70, Processing Time 0.021 seconds

An estimation method for stochastic reaction model (확률적 방법에 기반한 화학 반응 모형의 모수 추정 방법)

  • Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.813-826
    • /
    • 2015
  • This research deals with an estimation method for kinetic reaction model. The kinetic reaction model is a model to explain spread or changing process based on interaction between species on the Biochemical area. This model can be applied to a model for disease spreading as well as a model for system Biology. In the search, we assumed that the spread of species is stochastic and we construct the reaction model based on stochastic movement. We utilized Gillespie algorithm in order to construct likelihood function. We introduced a Bayesian estimation method using Markov chain Monte Carlo methods that produces more stable results. We applied the Bayesian estimation method to the Lotka-Volterra model and gene transcription model and had more stable estimation results.

Bayesian inference of longitudinal Markov binary regression models with t-link function (t-링크를 갖는 마코프 이항 회귀 모형을 이용한 인도네시아 어린이 종단 자료에 대한 베이지안 분석)

  • Sim, Bohyun;Chung, Younshik
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.47-59
    • /
    • 2020
  • In this paper, we present the longitudinal Markov binary regression model with t-link function when its transition order is known or unknown. It is assumed that logit or probit models are considered in binary regression models. Here, t-link function can be used for more flexibility instead of the probit model since the t distribution approaches to normal distribution as the degree of freedom goes to infinity. A Markov regression model is considered because of the longitudinal data of each individual data set. We propose Bayesian method to determine the transition order of Markov regression model. In particular, we use the deviance information criterion (DIC) (Spiegelhalter et al., 2002) of possible models in order to determine the transition order of the Markov binary regression model if the transition order is known; however, we compute and compare their posterior probabilities if unknown. In order to overcome the complicated Bayesian computation, our proposed model is reconstructed by the ideas of Albert and Chib (1993), Kuo and Mallick (1998), and Erkanli et al. (2001). Our proposed method is applied to the simulated data and real data examined by Sommer et al. (1984). Markov chain Monte Carlo methods to determine the optimal model are used assuming that the transition order of the Markov regression model are known or unknown. Gelman and Rubin's method (1992) is also employed to check the convergence of the Metropolis Hastings algorithm.

A Bayesian Method to Semiparametric Hierarchical Selection Models (준모수적 계층적 선택모형에 대한 베이지안 방법)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.

  • PDF

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation (카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구)

  • Lee, Minjea;Choi, Taeryon;Kim, Jeongseon;Woo, Hae Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.453-470
    • /
    • 2013
  • In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.

The extension of a continuous beliefs system and analyzing herd behavior in stock markets (연속신념시스템의 확장모형을 이용한 주식시장의 군집행동 분석)

  • Park, Beum-Jo
    • Economic Analysis
    • /
    • v.17 no.2
    • /
    • pp.27-55
    • /
    • 2011
  • Although many theoretical studies have tried to explain the volatility in financial markets using models of herd behavior, there have been few empirical studies on dynamic herding due to the technical difficulty of detecting herd behavior with time-series data. Thus, this paper theoretically extends a continuous beliefs system belonging to an agent based economic model by introducing a term representing agents'mutual dependence into each agent's utility function and derives a SV(stochastic volatility)-type econometric model. From this model the time-varying herding parameters are efficiently estimated by a Markov chain Monte Carlo method. Using monthly data of KOSPI and DOW, this paper provides some empirical evidences for stronger herding in the Korean stock market than in the U.S. stock market, and further stronger herding after the global financial crisis than before it. More interesting finding is that time-varying herd behavior has weak autocorrelation and the global financial crisis may increase its volatility significantly.

The Exponentiated Weibull-Geometric Distribution: Properties and Estimations

  • Chung, Younshik;Kang, Yongbeen
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.147-160
    • /
    • 2014
  • In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate expressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG distribution. Finally, summary and discussion are mentioned.

Simulating phase transition phenomena of the unitary cell model

  • Kim, Dong-Hoh
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.225-235
    • /
    • 2009
  • Lattice process models are used to explain phase transitions in statistical mechanics, a branch of physics. The Ising model, a specific form of lattice process model, was proposed by Ising in 1925. Since then, variants of the Ising model such as the Potts model and the unitary cell model have been proposed. Like the Ising model, it is believed that the more general models exhibit phase transitions on the critical surface, which is based on the mathematical equation. In statistical sense, phase transitions can be simulated through Markov Chain Monte Carlo (MCMC). We applied Swendsen-Wang algorithm, a block Gibbs algorithm, to a general lattice process models and we simulate phase transition phenomena of the unitary cell model.

  • PDF

At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution (Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.35-47
    • /
    • 2008
  • The low flow analysis is an important part in water resources engineering. Also, the results of low flow frequency analysis can be used for design of reservoir storage, water supply planning and design, waste-load allocation, and maintenance of quantity and quality of water for irrigation and wild life conservation. Especially, for identification of the uncertainty in frequency analysis, the Bayesian approach is applied and compared with conventional methodologies in at-site low flow frequency analysis. In the first manuscript, the theoretical background for the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) method and Metropolis-Hasting algorithm are studied. Two types of the prior distribution, a non-data- based and a data-based prior distributions are developed and compared to perform the Bayesian MCMC method. It can be suggested that the results of a data-based prior distribution is more effective than those of a non-data-based prior distribution. The acceptance rate of the algorithm is computed to assess the effectiveness of the developed algorithm. In the second manuscript, the Bayesian MCMC method using a data-based prior distribution and MLE(Maximum Likelihood Estimation) using a quadratic approximation are performed for the at-site low flow frequency analysis.

Bayesian Methods for Wavelet Series in Single-Index Models

  • Park, Chun-Gun;Vannucci, Marina;Hart, Jeffrey D.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.83-126
    • /
    • 2005
  • Single-index models have found applications in econometrics and biometrics, where multidimensional regression models are often encountered. Here we propose a nonparametric estimation approach that combines wavelet methods for non-equispaced designs with Bayesian models. We consider a wavelet series expansion of the unknown regression function and set prior distributions for the wavelet coefficients and the other model parameters. To ensure model identifiability, the direction parameter is represented via its polar coordinates. We employ ad hoc hierarchical mixture priors that perform shrinkage on wavelet coefficients and use Markov chain Monte Carlo methods for a posteriori inference. We investigate an independence-type Metropolis-Hastings algorithm to produce samples for the direction parameter. Our method leads to simultaneous estimates of the link function and of the index parameters. We present results on both simulated and real data, where we look at comparisons with other methods.

  • PDF

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • Chung Younshik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF