• 제목/요약/키워드: Markov chain 1

검색결과 304건 처리시간 0.03초

2차 마르코프 사슬 모델을 이용한 시계열 인공 풍속 자료의 생성 (Generation of Synthetic Time Series Wind Speed Data using Second-Order Markov Chain Model)

  • 유기완
    • 풍력에너지저널
    • /
    • 제14권1호
    • /
    • pp.37-43
    • /
    • 2023
  • In this study, synthetic time series wind data was generated numerically using a second-order Markov chain. One year of wind data in 2020 measured by the AWS on Wido Island was used to investigate the statistics for measured wind data. Both the transition probability matrix and the cumulative transition probability matrix for annual hourly mean wind speed were obtained through statistical analysis. Probability density distribution along the wind speed and autocorrelation according to time were compared with the first- and the second-order Markov chains with various lengths of time series wind data. Probability density distributions for measured wind data and synthetic wind data using the first- and the second-order Markov chains were also compared to each other. For the case of the second-order Markov chain, some improvement of the autocorrelation was verified. It turns out that the autocorrelation converges to zero according to increasing the wind speed when the data size is sufficiently large. The generation of artificial wind data is expected to be useful as input data for virtual digital twin wind turbines.

불연속 Kernel-Pareto 분포를 이용한 일강수량 모의 기법 개발 (Development of Daily Rainfall Simulation Model Using Piecewise Kernel-Pareto Continuous Distribution)

  • 권현한;소병진
    • 대한토목학회논문집
    • /
    • 제31권3B호
    • /
    • pp.277-284
    • /
    • 2011
  • 기존 Markov Chain 모형을 통한 일강수량 모의에서 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단된다. 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인할 수 있었다.

불연속 Pareto 분포를 활용한 강수 모의발생 모델 개발 (A Development of Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution)

  • 권현한;소병진;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.88-88
    • /
    • 2011
  • 수자원에서 일강수량 모의기법은 다양한 목적으로 활용되고 있으며 기본적으로 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로서 이용된다. 수자원계획은 장기적인 목적을 가지고 수행되는 것이 일반적이며 우리가 목표로 하는 장기간의 일강수량자료의 획득이 어렵기 때문에 단기간의 일강수량자료를 장기 모의하여 이용하게 된다. 일강수량을 모의하는데 있어서 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이며, 기존 Markov Chain 모형을 통한 일강수량 모의에서 발생하는 가장 큰 문제점은 극치강수량을 재현하기 어렵다는 점이다. 이러한 문제점으로 인해 수자원 계획을 수립하는데 있어서 불확실성을 가중시키고 있다. 특히 일강수량 모의기법을 통해서 추정되는 빈도강수량의 과소추정으로 인해 수공구조물 설계 시에 신뢰성을 확보하는 데 문제점이 있다. 이러한 점에서 본 연구에서는 기존 Markov Chain 모형에서 일강수량에 평균적인 특성과 극치특성을 동시에 재현할 수 있도록 불연속 Kernel-Pareto Distribution 기반에 일강수량모의기법을 개발하였다. 한강유역의 3개 강수지점에 대해서 기존 Markov Chain 모형과 본 연구에서 제안한 방법을 적용한 결과 여름의 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 제안한 불연속 Kernel-Pareto 분포형 기반 Markov Chain 모형은 여름의 일강수량 모의 시 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하는 것으로 나타났다. 본 연구에서 제시한 방법론은 전체적으로 기존 Markov Chain 모형에 비해 극치강수량을 재현하는데 유리한 기법으로 판단되며, 또한 극치강수량을 일반강수량으로부터 분리하여 모의함으로서 평균 및 중간값 등 낮은 차수에 모멘트 등 일강수량에 전체적인 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

예방정비를 고려한 복수 부품 시스템의 신뢰성 분석: 마코프 체인 모형의 응용 (Reliability Analysis of Multi-Component System Considering Preventive Maintenance: Application of Markov Chain Model)

  • 김헌길;김우성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권4호
    • /
    • pp.313-322
    • /
    • 2016
  • Purpose: We introduce ways to employ Markov chain model to evaluate the effect of preventive maintenance process. While the preventive maintenance process decreases the failure rate of each subsystems, it increases the downtime of the system because the system can not work during the maintenance process. The goal of this paper is to introduce ways to analyze this trade-off. Methods: Markov chain models are employed. We derive the availability of the system consisting of N repairable subsystems by the methods under various maintenance policies. Results: To validate our methods, we apply our models to the real maintenance data reports of military truck. The error between the model and the data was about 1%. Conclusion: The models developed in this paper fit real data well. These techniques can be applied to calculate the availability under various preventive maintenance policies.

GENERALIZED DOMINOES TILING'S MARKOV CHAIN MIXES FAST

  • KAYIBI, K.K.;SAMEE, U.;MERAJUDDIN, MERAJUDDIN;PIRZADA, S.
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.469-480
    • /
    • 2019
  • A generalized tiling is defined as a generalization of the properties of tiling a region of ${\mathbb{Z}}^2$ with dominoes, and comprises tiling with rhombus and any other tilings that admits height functions which can be ordered into a distributive lattice. By using properties of the distributive lattice, we prove that the Markov chain consisting of moving from one height function to the next by a flip is fast mixing and the mixing time ${\tau}({\epsilon})$ is given by ${\tau}({\epsilon}){\leq}(kmn)^3(mn\;{\ln}\;k+{\ln}\;{\epsilon}^{-1})$, where mn is the area of the grid ${\Gamma}$ that is a k-regular polycell. This result generalizes the result of the authors (T-tetromino tiling Markov chain is fast mixing, Theor. Comp. Sci. (2018)) and improves on the mixing time obtained by using coupling arguments by N. Destainville and by M. Luby, D. Randall, A. Sinclair.

Markov Chain을 이용한 버스지체시간 예측 (The Bus Delay Time Prediction Using Markov Chain)

  • 이승훈;문병석;박범진
    • 한국ITS학회 논문지
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 2009
  • 버스지체시간은 버스노선의 교통여건이 반영되어 나타나는 결과로서 버스도착시간을 예측하는데 있어 중요한 요소이다. 이에 본 연구에서는 다양한 변수를 사용하지 않아도 되는 마코브 체인을 이용하여 분석 정류장간 전이확률행렬표를 생성하고 이를 이용하여 버스지체시간을 예측하였다. 본 연구를 통하여 기존연구의 한계점인 정류장별 계획된 버스도착 시간이 존재하지 않은 경우에 대하여 배차시간을 이용한 버스지체시간 산출방법을 제시함으로서 기존연구의 한계점을 극복하였으며, 또한 정류장별 버스지체시간을 예측하기 위해 정의한 정류장간 버스지체의 전이는 동질하다는 귀무가설을 대웅표본 T검정을 통하여 채택함으로서 사용한 가정이 95% 신뢰수준에서 유의하다는 것을 확인하였다. 이를 통하여 향후마코브 체인을 이용하여 버스도착시간 예측이 가능할 것으로 판단된다.

  • PDF

Markov Chain Monte Carol estimation in Two Successive Occasion Sampling with Radomized Response Model

  • Lee, Kay-O
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.211-224
    • /
    • 2000
  • The Bayes estimation of the proportion in successive occasions sampling with randomized response model is discussed by means of Acceptance Rejection sampling. Bayesian estimation of transition probabilities in two successive occasions is suggested via Markov Chain Monte Carlo algorithm and its applicability is represented in a numerical example.

  • PDF

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

SITE-DEPENDENT IRREGULAR RANDOM WALK ON NONNEGATIVE INTEGERS

  • Konsowa, Mokhtar-H.;Okasha, Hassan-M.
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.401-409
    • /
    • 2003
  • We consider a particle walking on the nonnegative integers and each unit of time it makes, given it is at site k, either a jump of size m distance units to the right with probability $p_{k}$ or it goes back (falls down) to its starting point 0, a retaining barrier, with probability $v_{k}\;=\;1\;-\;p_{k}$. This is a Markov chain on the integers $mZ^{+}$. We show that if $v_{k}$ has a nonzero limit, then the Markov chain is positive recurrent. However, if $v_{k}$ speeds to 0, then we may get transient Markov chain. A critical speeding rate to zero is identified to get transience, null recurrence, and positive recurrence. Another type of random walk on $Z^{+}$ is considered in which a particle moves m distance units to the right or 1 distance unit to left with probabilities $p_{k}\;and\;q_{k}\;=\;1\;-\;p_{k}$, respectively. A necessary condition to having a stationary distribution and positive recurrence is obtained.