Browse > Article
http://dx.doi.org/10.14317/jami.2019.469

GENERALIZED DOMINOES TILING'S MARKOV CHAIN MIXES FAST  

KAYIBI, K.K. (School of Mathematics, University of Bristol)
SAMEE, U. (Department of Mathematics, Islamia College of Sciences and Commerce)
MERAJUDDIN, MERAJUDDIN (Department of Applied Mathematics, AMU)
PIRZADA, S. (Department of Mathematics, University of Kashmir)
Publication Information
Journal of applied mathematics & informatics / v.37, no.5_6, 2019 , pp. 469-480 More about this Journal
Abstract
A generalized tiling is defined as a generalization of the properties of tiling a region of ${\mathbb{Z}}^2$ with dominoes, and comprises tiling with rhombus and any other tilings that admits height functions which can be ordered into a distributive lattice. By using properties of the distributive lattice, we prove that the Markov chain consisting of moving from one height function to the next by a flip is fast mixing and the mixing time ${\tau}({\epsilon})$ is given by ${\tau}({\epsilon}){\leq}(kmn)^3(mn\;{\ln}\;k+{\ln}\;{\epsilon}^{-1})$, where mn is the area of the grid ${\Gamma}$ that is a k-regular polycell. This result generalizes the result of the authors (T-tetromino tiling Markov chain is fast mixing, Theor. Comp. Sci. (2018)) and improves on the mixing time obtained by using coupling arguments by N. Destainville and by M. Luby, D. Randall, A. Sinclair.
Keywords
Dominoes; distributive lattice; tiling; partition functions; height function; mixing time of Markov chain; FPRAS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Korn and I. Pak, Tiling of rectangles with T-tetrominoes, Theor. Comp. Sci. 319 (2007) 3-27.   DOI
2 M. Luby, D. Randall and A. Sinclair, Markov chain algorithms for planar lattice structures, SIAM J. Comput. 31 (2001) 167-192.   DOI
3 C. Merino, On the number of tilings of the rectangular board with T-tetrominoes, Aust. J. Comb. 14 (2008) 107-114.
4 I. Pak and J. Yang, Tiling simply connected regions with rectangles, J. Comb. Theory, Series A 120 (2013) 1804-1816.   DOI
5 A. Sinclair, Convergence rates for Monte Carlo Experiments, S.G. Whittington (eds.), Numerical Methods for Polymeric Systems, Springer-Verlag, New York, (1998) 1-17.
6 O. Bodini and M. Latapy, Generalized tilings with height function, Morfismos 7 (2003) 47-68.
7 H.N.V. Temperley and M.E. Fisher, Dimer problem in statistical mechanics-an exact result, Phi. Mag. 6 (1961) 1061-1063.   DOI
8 R. Thomas, A survey of Pfaffian orientations of graphs, Proc. Int. Congress of Mathematicians, Madrid (2006) 963-984.
9 D.W. Walkup, Covering a rectangle with T-tetrominoes, Amer. Math. Monthly 72 (1965) 986-988.   DOI
10 H. Cohn, R. Kenyon and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001) 297-346.   DOI
11 N. Destainville, Mixing times of plane random rhombus tilings, Disc. Math. Theo. Comp. Sci. Proc. AA (DM-CCG), (2001) 1-22.
12 Solomon W. Golomb, Polyominoes, Princeton University Press, (1994).
13 M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989) 1149-1178.   DOI
14 P.W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica 27 (1961) 1209-1225.   DOI
15 P.W. Kasteleyn, Graph Theory and crystal physics, in Graph Theory and Theoretical Physics, Academic Press, New York, (1967) 43-110.
16 K.K. Kayibi and S. Pirzada, T-tetromino tiling Markov chain is fast mixing, Theor. Comp. Sci. (2018) 714 (2018) 1-14.   DOI
17 R. Kenyon, A. Okounkov and S. Sheffield, Dimers and Amoebae, Ann. Math. 163 (2006) 1019-1056.   DOI
18 K.K. Kayibi and S. Pirzada, Planarity, symmetry and counting tilings, Graphs and Comb. 28 (2012) 483-497.   DOI
19 K.K Kayibi, S. Pirzada and T.A. Chishti, Sampling contengency tables, AKCE Int. J. Graphs Comb. 15, 3 (2018) 298-306.   DOI
20 R. Kenyon, The planar dimer model with a boundary: A survey, (1998) Preprint.