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SITE-DEPENDENT IRREGULAR RANDOM WALK ON
NONNEGATIVE INTEGERS

MoKHTAR H. Konsowa! AND HAssAN M. OKASHA?

ABSTRACT

We consider a particle walking on the nonnegative integers and each unit
of time it makes, given it is at site k, either a jump of size m distance units
to the right with probability px or it goes back (falls down) to its starting
point 0, a retaining barrier, with probability g, = 1 — px. This is a Markov
chain on the integers mZ*. We show that if ¢, has a nonzero limit, then
the Markov chain is positive recurrent. However, if g5 speeds to 0, then we
may get transient Markov chain. A critical speeding rate to zero is identified
to get transience, null recurrence, and positive recurrence. Another type of
random walk on Z7 is considered in which a particle moves m distance units
to the right or 1 distance unit to left with probabilities p; and qr = 1 — py,
respectively. A necessary condition to having a stationary distribution and
positive recurrence is obtained.
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1. INTRODUCTION

The theory and applications of random walks are ubiquitous in the modern
probability literature and random walks form perhaps the simplest and most
important examples of stochastic processes-random phenomena unfolding with
time. The connection between random walks and electric networks has been
recognized for some time. See the colorful book by Doyle and Snell (1984). The
regular random walk is a sequence S, = Y 7, X} of partial sums of independent
identically distributed random variables X, X, ... The nearest neighbor random
walk on the lattice of integers is well known. See, for example, Kemeny et al.
(1976) and Doyle and Snell (1984). A state z of a Markov chain is called recurrent
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if the return time to z is finite with probability 1 and transient otherwise. A
Markov chain is recurrent (transient) if all the states are recurrent (transient). If
the mean return time of a recurrent state is also finite, the state is called positive
recurrent and the Markov chain is positive recurrent if all the states are positive
recurrent. The nearest neighbor random walk on a graph G is a Markov chain
on the set of vertices of G and the transitions are made from a given vertex to
one of its neighbors. A Markov chain is said to be irreducible if each vertex is
accessible from each other vertex. Konsowa and Mitro (1991) observed that the
type (transience or recurrence) of the nearest neighbor random walk on a random
spherically symmetric tree (all vertices of the same distance from the root of the
tree have the same degree) is the same as the type of the walk in a random
environment on the lattice of integers.

Two types of irregular random walks on nonnegative integers are considered
in this paper. In the first type, we consider a particle that makes, given it is at
site k, a jump of size m distance units to the right with probability px or makes
a backward jump to 0 with probability g = 1 — p. In that case the size of the
jump the particle makes to 0 depends on its distance from 0 and as such these
jump sizes are neither independent nor identically distributed random variables.
Let S; denote the site of the particle at time j, then we call S; a site-dependent
irregular random walk (SDIRW) on the nonnegative integers mZ*. This is a
type of markov chains on the integers mZ*. The state 0 is considered to be
a retaining barrier, that is, p(0.0) > 0. A second type of SDIRW on Z7 is
obtained from the first type by restricting the size of the backward jump to be
always a unit distance. This type will be denoted by (m,1)SDIRW. If the
probabilities px in the first type are assumed to be equal to a constant p, then
the SDIRW on mZ™* will be positive recurrent regardless of the value of m and
p- Whilst, we show that if the sequence g speeds fast enough to zero, we may
obtain transient SDIRW and less speeding to zero may yield null or positive
recurrence.

For the second type a necessary condition to having a positive recurrent
(m,1)SDIRW is obtained. The probability generating function is used to explore
the case of positive recurrence of our Markov chains. The probability generating
function I1(s) of a probability distribution w = (7, : £ > 0) is

o
Ii(s) = Z mys®.
k=0

We recall that the nonnegative vector w = (7, : > 0) is a stationary distribution
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for a Markov chain with transition matrix P if its components are summing to
1 and 7P = w. We need the following theorem that may be found in Resnick
(1994).

THEOREM 1.1. An irreducible Markov chain has a stationary distribution iff
it 1s positive recurrent.

2. SITE-DEPENDENT IRREGULAR RANDOM WALK (SDIRW)

We first consider the case in which the probabilities p; are all equal to some
constant p, 0 < p < 1. Consider a Markov chain on the integers mZ™ with
transition probabilities defined by, for 7 > 0,

{P(Za7’+m)=pa

P(i,0) =1 —p. 1)

Obviously, this is an irreducible Markov chain on the integers mZ ' with 0 as a
retaining barrier. This Markov chain is positive recurrent regardless of the values
of p and m. This follows immediately from Theorem 1.1 and the fact that the
vector 7 whose components are

7('0:1‘;07
Tkm = pFmo, if k£2>1,
7 =0, it j#km, k>0

is the stalonary distribution for the irreducible aperiodic Markov chain defined
by (2.1).

We turn our attention now to the case of varying jump probabilities by con-
sidering a sequence {py}. Hence, we have a Markov chain on Z*+ with transition
probabilities:

{p(km (k + 1)m) = prm, 2.9

p(km,O) =1~ prm-

This is an irreducible on the integers mZ* with 0 as a retaining barrier. If Ty
denotes the time of the first return to 0 and my = E(Tp), then

P(TO =7n-+ 1) =PoPmP2m " Pn-1)m (1 —an)
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and

N
P(TO < OO) = (1 "pO) + Ali_l)noozpo PmP2m " Pn-1)m (1 —pnm)

n=1
N
=1— lim H .
N-ooo Pkm
k=0

Thus the SDIRW defined by equations (2.2) is recurrent iff

f\lgnoo H Pkm 0,
k=1
or equivalently iff
o0
> (1 = prm) = 00 (2.3)

The following proposition follows immediately.

PROPOSITION 2.1. If the two sequences {pr} and {Px} are such that pp <
pr and the SDIRW defined by equations (2.2) and corresponding to {pg} is
recurrent, then so is the one corresponding {py}.

The following theorem shows that we may get transient, null recurrent, or
positive recurrent SDIRW depending on how fast g, = 1 — p, goes to 0.

THEOREM 2.2. Let pg and py be arbitrary two real numbers between 0 and 1
and forn > 2, p, =1 —n"% «a > 0. Then the SDIRW of equations (2.2) is
transient if a > 1, null recurrent if & = 1, and positive recurrent if a < 1.

ProOOF. The transience when o > 1 and recurrence when o < 1 follow
immediately from equation (2.3). To prove the positive recurrence for o < 1 we
need to make sure of the finiteness of the mean recurrence time myg. It can easily
be shown that

Mo = (1 _pO) + anomeQm T P(n—2)m (1 - p(n—l)m)' (2'4)

n=2

Let bn = npopm Pom - "Pn-2)m (1 - p(n—l)m)' Then
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Hence,
by, ') mana
_ m*n®t — (n 4+ 1)m*(n — 1)°
N men®
Consequently,

b oo if a<l
limn (1-— n+1>: 1

n bn — if a=1.
m

Raabe’s test of convergence assures the positive recurrence for o < 1 and the null
recurrence for &« = 1 and m > 1. While Gauss’ test 1s used to assure the null
recurrence for « = 1 and m = 1. O

Note that if o > 1, then >, gx < oo and the Borel-Cantelli lemma assures
that only finitely many jumps are made to zero and hence the transience must
occur. The following proposition is straightforward.

PRrROPOSITION 2.3. If pr — p < 1, then the SDIRW defined by equations
(2.2) is positive recurrent.

ProOOF. All that is needed to show my, of equation (2.4), is finite is to assure
the finiteness of

> Hpkm
n=2 =
Since py — p < 1, then for € = (1 — p)/2, there exists ng such that for k£ > ng,

1+
pk<Tp<1
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We show that 322 'n [T7CZ pem < co. This is equivalent to show

ng+{—2

[e.¢]
Y no+1) [ prm < oo
=0 k=0

Now
00 ng ng+{—2 oo not+l—2
S]] pem [] pem <Dt JI pim
=3 k=0 k=ng+1 =3 k=no+1
o~ (1 +p\i-2
<Y i(=2)
2
< 00,
which completes the proof. |

3. (m,1)SITE-DEPENDENT IRREGULAR RANDOM WALK
((m,1)SDIRW)

We study in this section the second type of our site-dependent irregular ran-
dom walk on Z*. The (m,n)SDIRW can be formulated by the following tran-
sition probabilities. For 0 < py < 1,

plk, k +m) = pg, k>0,
p(kk_n)_l_plﬁ k2n7
(3.1)
p(k,O)—l—pk, k <mn,
(i, k) = k#i+m, i—n, 0.

This (m,n)SDIRW is not necessarily irreducible on Z* and to make it so we
restrict m and n to be relatively prime; that is, their greatest common divisor is
1. We introduce the following straightforward lemma.

LEMMA 3.1. The (m,n)SDIRW defined by (3.1) is irreducible if and only

if m and n are relatively prime.

PROOF. Suppose that the (m,n)SDIRW is irreducible. Then the state 1 is
reachable. In which case there are two integers £ and [ such that mk —nl =1,
which assures that m and n are relatively prime. Conversely, suppose that m and
n are relatively prime. Then there are two integers & and 1 such that mk—nl =1
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and for any positive integer 7, mkj — nlj = j. That is the state j is reached by
making kj steps to the right and lj steps to the left. Whence, the chain is
irreducible 0

We only consider the case where the size of each backward jump is a unit
distance. The transition probabilities are formulated as follows:

p(k,k +m) = py, k>0,
p(kvk_l):l_pka k>1, (32)
p(0,0) =1 - po.

This is an (m,1)SDIRW on Z*. The irreducibility of this Markov chain follows
from Lemma 3.1. The following theorem gives a necessary condition for the
positive recurrence and generalizes somehow Theorem 3.1 of Konsowa and Okasha
(2000).

THEOREM 3.2. Consider the (m,1)SDIRW defined by (3.2). A necessary
condition for a probability distribution ™ to be a stationary distribution is

Z 1 —moqo _
kPR = qo =1 —po.

PrOOF. The system wP = 7 yields,

Ty = Togo + 141, (3.3)
T = Tj4+145+1, 0<gj<m~ 1, (34)
T = Tj—mPj—m + Tj41q41, j>m. (3.5)

Multiplying both sides of equation (3.5) by s/~™ and summing over j yield:

(o ¢] o) o0
j—m __ . ) j—m . . j—m
E st = E Tj—mDj—m &' + E Tjt1 Qg1 S

j=m j=m
Setting K(s) = > 7o o Tk Pk s®, we obtain
m—1 ‘
s_m{H(s) - Z stj}
j—O
= K(s)+s~ mHZW Y1 —-pjt1)

= K(s)+s™H [{H(s) — I;]ﬂksk} — {K(s) - kiﬂkpksk}] .
= =0
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Hence,

m~1 m
S{H(S)— stj}=K() s™T L TI(s) Zﬂks - (s)-{—Zﬂkpksk
=0 k=0

= K(s)s™! +1I(s Zﬂks k-
Thus,
m—1
sTI(s) = smo + 2wy + s Z Tes® + K(s)s™! +1I(s Z Tes* gk
k=2
m—1
= smp + s*my + K(s)s™ ! +T0(s) — K(s) + 5 mps” (3.6)
k=2
—Toqgo — T15q1 — $ Z mrs" gy
k=2
Applying (3.4) to the most right term of (3.6) we obtain
sTI(s) = smo + K(s) s +1I(s) — K(s) — moqo — m1 S .
It follows then from equation (3.2} that
sII(s) = K(s)s™ — K(s) + II(s) + moqo(s — 1).
Consequently,
H(s) = K(s)(s™ — 1) + moqo(s — 1).
s—1
Taking the limit as s — 1 we obtain what was to be proved. ]

4. CONCLUDING RESULTS

In this paper we define two types of irregular random walks on the set of
nonnegative integers. For the first one, we consider a particle that makes a jump
from a site k to a site k + m with probability p; and falls down to the state 0
with probability ¢z = 1 — px. For the second type, we consider (m,1)SDIRW
that describes the walk of a particle on the set of nonnegative integers in a way
that it makes a jump of size m to the right with probability py and a jump of

unit distance to the left with probability ¢x = 1 — px. We conclude:
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1. For the first type, if g speeds fast enough to zero, the walk tends to be
transient and the nonzero limit of q; ensures positive recurrence. Whereas,
moderate speed yields null recurrence. Moreover, if p, equals some constant
p, then the walk is positive recurrent regardless of the value p and the jump
size m;

2. For the senond type, we give a sufficient condition for the existence of the
stationary distribution which in turn ensures the positive recurrence of the
walk.

REFERENCES

DovyLeE, P. G. AND SNELL, J. L. (1984). “Random walks and electrical networks”, The
Carus Mathematical Monographs, Vol. 22, The Mathematical Association of America,
Washington.

KEMENY, J. G., SNELL, J. L. aAND Knarp A. W. (1976). Denumerable Markov Chains,
Springer-Verlag, New York.

Konsowa, M. H. AND MiTRO, J. (1991). “The type problem for random walks on trees”,
Journal of Theoretical Probability, 4, 5635-550.

Konsowa, M. H. anp OxkasHa, H. M. (2000). “Irregular random walks on nonnegative
integers”, Kyungpook Mathematical Journal, 40, 431-436.

RESNICK, S. (1994). Adventures in Stochastic Processes, Birkhauser, Boston.



