• 제목/요약/키워드: Markov analysis

Search Result 760, Processing Time 0.025 seconds

Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme (Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Kim, Byung-Sik;Yoon, Seok-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.383-392
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established. Therefore, uncertainty analysis are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an unexpected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Marginal Propensity to Consume with Economic Shocks - FIML Markov-Switching Model Analysis (경제충격 시기의 한계소비성향 분석 - FIML 마코프-스위칭 모형 이용)

  • Yoon, Jae-Ho;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6565-6575
    • /
    • 2014
  • Hamilton's Markov-switching model [5] was extended to the simultaneous equations model. A framework for an instrumental variable interpretation of full information maximum likelihood (FIML) by Hausman [4] can be used to deal with the problem of simultaneous equations based on the Hamilton filter [5]. A comparison of the proposed FIML Markov-switching model with the LIML Markov-switching models [1,2,3] revealed the LIML Markov-switching models to be a special case of the proposed FIML Markov-switching model, where all but the first equation were just identified. Moreover, the proposed Markov-switching model is a general form in simultaneous equations and covers a broad class of models that could not be handled previously. Excess sensitivity of marginal propensity to consume with big shocks, such as housing bubble bursts in 2008, can be determined by applying the proposed model to Campbell and Mankiw's consumption function [6], and allowing for the possibility of structural breaks in the sensitivity of consumption growth to income growth.

Performance Analysis of Wireless Communication System with FSMC Model in Nakagami-m Fading Channel (Nakagami-m 페이딩 채널에서 FSMC 모델에 의한 무선 통신시스템의 성능 분석)

  • 조용범;노재성;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1010-1019
    • /
    • 2004
  • In this paper, we represent Nakagami-m fading channel as finite-State Markov Channel (FSMC) and analyze the performance of wireless communication system with varying the fading channel condition. In FSMC model, the received signal's SNR is divided into finite intervals and these intervals are formed into Markov chain states. Each state is modeled by a BSC and the transition probability is dependent upon the physical characterization of the channel. The steady state probability and average symbol error rate of each state and transition probability are derived by numerical analysis and FSMC model is formed with these values. We found that various fading channels can be represented with FSMC by changing state transition index. In fast fading environment in which state transition index is large, the channel can be viewed as i.i.d. channel and on the contrary, in slow fading channel where state transition index is small, the channel can be represented by simple FSMC model in which transitions occur between just adjacent states. And we applied the proposed FSMC model to analyze the coding gain of random error correcting code on various fading channels via computer simulation.

ANALYSIS OF A QUEUEING SYSTEM WITH OVERLOAD CONTROL BY ARRIVAL RATES

  • CHOI DOO IL
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.455-464
    • /
    • 2005
  • In this paper, we analyze a queueing system with overload control by arrival rates. This paper is motivated by overload control to prevent congestion in telecommunication networks. The arrivals occur dependent upon queue length. In other words, if the queue length increases, the arrivals may be reduced. By considering the burstiness of traffics in telecommunication networks, we assume the arrival to be a Markov-modulated Poisson process. The analysis by the embedded Markov chain method gives to us the performance measures such as loss and delay. The effect of performance measures on system parameters also is given throughout the numerical examples.

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

SEMI-MARKOV COMPARTMENTAL MODELS OF INVADING INSECT POPULATIONS

  • Kumar, Krishna B.;Arivudainambi, D.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.161-174
    • /
    • 2000
  • The total number of deaths and total sojourn times of African honey bees are studied using semi-markov compartment analysis. This generalizes many existing biological models.

A Simulation for the Second Derivative of a Mean Busy Cycle in a Markov Renewal Process (마코르 리뉴얼 과정에서 평균 busy cycle의 2계도함수에 대한 시뮬레이션)

  • 박흥식
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.294-298
    • /
    • 1999
  • In this paper, through simulations, we find the second derivative SPA(Smoothed Perturbation Analysis) estimates of mean busy cycle with respect to a given parameter in a Markov renewal process which is generated by two exponential distributions. We compare these SPA estimates with the traditional SD(symetric difference) estimates.

  • PDF

Light Weight Korean Morphological Analysis Using Left-longest-match-preference model and Hidden Markov Model (좌최장일치법과 HMM을 결합한 경량화된 한국어 형태소 분석)

  • Kang, Sangwoo;Yang, Jaechul;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.24 no.2
    • /
    • pp.95-109
    • /
    • 2013
  • With the rapid evolution of the personal device environment, the demand for natural language applications is increasing. This paper proposes a morpheme segmentation and part-of-speech tagging model, which provides the first step module of natural language processing for many languages; the model is designed for mobile devices with limited hardware resources. To reduce the number of morpheme candidates in morphological analysis, the proposed model uses a method that adds highly possible morpheme candidates to the original outputs of a conventional left-longest-match-preference method. To reduce the computational cost and memory usage, the proposed model uses a method that simplifies the process of calculating the observation probability of a word consisting of one or more morphemes in a conventional hidden Markov model.

  • PDF