• Title/Summary/Keyword: Markov Features

Search Result 151, Processing Time 0.028 seconds

A New Feature for Speech Segments Extraction with Hidden Markov Models (숨은마코프모형을 이용하는 음성구간 추출을 위한 특징벡터)

  • Hong, Jeong-Woo;Oh, Chang-Hyuck
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.293-302
    • /
    • 2008
  • In this paper we propose a new feature, average power, for speech segments extraction with hidden Markov models, which is based on mel frequencies of speech signals. The average power is compared with the mel frequency cepstral coefficients, MFCC, and the power coefficient. To compare performances of three types of features, speech data are collected for words with explosives which are generally known hard to be detected. Experiments show that the average power is more accurate and efficient than MFCC and the power coefficient for speech segments extraction in environments with various levels of noise.

Semantic Event Detection in Golf Video Using Hidden Markov Model (은닉 마코프 모델을 이용한 골프 비디오의 시멘틱 이벤트 검출)

  • Kim Cheon Seog;Choo Jin Ho;Bae Tae Meon;Jin Sung Ho;Ro Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1540-1549
    • /
    • 2004
  • In this paper, we propose an algorithm to detect semantic events in golf video using Hidden Markov Model. The purpose of this paper is to identify and classify the golf events to facilitate highlight-based video indexing and summarization. In this paper we first define 4 semantic events, and then design HMM model with states made up of each event. We also use 10 multiple visual features based on MPEG-7 visual descriptors to acquire parameters of HMM for each event. Experimental results showed that the proposed algorithm provided reasonable detection performance for identifying a variety of golf events.

  • PDF

Bayesian Network-based Data Analysis for Diagnosing Retinal Disease (망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석)

  • Kim, Hyun-Mi;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.269-280
    • /
    • 2013
  • In this paper, we suggested the possibility of using an efficient classifier for the dependency analysis of retinal disease. First, we analyzed the classification performance and the prediction accuracy of GBN (General Bayesian Network), GBN with reduced features by Markov Blanket and TAN (Tree-Augmented Naive Bayesian Network) among the various bayesian networks. And then, for the first time, we applied TAN showing high performance to the dependency analysis of the clinical data of retinal disease. As a result of this analysis, it showed applicability in the diagnosis and the prediction of prognosis of retinal disease.

Category-based Feature Inference in Causal Chain (인과적 사슬구조에서의 범주기반 속성추론)

  • Choi, InBeom;Li, Hyung-Chul O.;Kim, ShinWoo
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.59-72
    • /
    • 2021
  • Concepts and categories offer the basis for inference pertaining to unobserved features. Prior research on category-based induction that used blank properties has suggested that similarity between categories and features explains feature inference (Rips, 1975; Osherson et al., 1990). However, it was shown by later research that prior knowledge had a large influence on category-based inference and cases were reported where similarity effects completely disappeared. Thus, this study tested category-based feature inference when features are connected in a causal chain and proposed a feature inference model that predicts participants' inference ratings. Each participant learned a category with four features connected in a causal chain and then performed feature inference tasks for an unobserved feature in various exemplars of the category. The results revealed nonindependence, that is, the features not only linked directly to the target feature but also to those screened-off by other feature nodes and affected feature inference (a violation of the causal Markov condition). Feature inference model of causal model theory (Sloman, 2005) explained nonindependence by predicting the effects of directly linked features and indirectly related features. Indirect features equally affected participants' inference regardless of causal distance, and the model predicted smaller effects regarding causally distant features.

Development of a Stock Information Retrieval System using Speech Recognition (음성 인식을 이용한 증권 정보 검색 시스템의 개발)

  • Park, Sung-Joon;Koo, Myoung-Wan;Jhon, Chu-Shik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.4
    • /
    • pp.403-410
    • /
    • 2000
  • In this paper, the development of a stock information retrieval system using speech recognition and its features are described. The system is based on DHMM (discrete hidden Markov model) and PLUs (phonelike units) are used as the basic unit for recognition. End-point detection and echo cancellation are included to facilitate speech input. Continuous speech recognizer is implemented to allow multi-word speech. Data collected over several months are analyzed.

  • PDF

Performance Analysis of IEEE 802.15.6 MAC Protocol in Beacon Mode with Superframes

  • Li, Changle;Geng, Xiaoyan;Yuan, Jingjing;Sun, Tingting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1108-1130
    • /
    • 2013
  • Wireless Body Area Networks (WBANs) are becoming increasingly important to solve the issue of health care. IEEE 802.15.6 is a wireless communication standard for WBANs, aiming to provide a real-time and continuous monitoring. In this paper, we present our development of a modified Markov Chain model and a backoff model, in which most features such as user priorities, contention windows, modulation and coding schemes (MCSs), and frozen states are taken into account. Then we calculate the normalized throughput and average access delay of IEEE 802.15.6 networks under saturation and ideal channel conditions. We make an evaluation of network performances by comparing with IEEE 802.15.4 and the results validate that IEEE 802.15.6 networks can provide high quality of service (QoS) for nodes with high priorities.

Applying the Bi-level HMM for Robust Voice-activity Detection

  • Hwang, Yongwon;Jeong, Mun-Ho;Oh, Sang-Rok;Kim, Il-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.373-377
    • /
    • 2017
  • This paper presents a voice-activity detection (VAD) method for sound sequences with various SNRs. For real-time VAD applications, it is inadequate to employ a post-processing for the removal of burst clippings from the VAD output decision. To tackle this problem, building on the bi-level hidden Markov model, for which a state layer is inserted into a typical hidden Markov model (HMM), we formulated a robust method for VAD not requiring any additional post-processing. In the method, a forward-inference-ratio test was devised to detect the speech endpoints and Mel-frequency cepstral coefficients (MFCC) were used as the features. Our experiment results show that, regarding different SNRs, the performance of the proposed approach is more outstanding than those of the conventional methods.

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

Design of Robust Speech Recognition System Using Tandem Architecture (탠덤 구조를 이용한 강인한 음성 인식 시스템 설계)

  • Yun, Young-Sun;Lee, Yun-Keun
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.323-326
    • /
    • 2007
  • The various studies of combining neural network and hidden Markov models within a single system are done with expectations that it may potentially combine the advantages of both systems. With the influence of these studies, tandem approach was presented to use neural network as the classifier and hidden Markov models as the decoder. In this paper, we applied the trend information of segmental features to tandem architecture and used posterior probabilities, which are the output of neural network, as inputs of recognition system. The experiments are performed on Aurora2 database to examine the potentiality of the trend feature based tandem architecture. The proposed method shows the better results than the baseline system on very low SNR environments.

  • PDF

Implementation of Hidden Markov Model based Speech Recognition System for Teaching Autonomous Mobile Robot (자율이동로봇의 명령 교시를 위한 HMM 기반 음성인식시스템의 구현)

  • 조현수;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.281-281
    • /
    • 2000
  • This paper presents an implementation of speech recognition system for teaching an autonomous mobile robot. The use of human speech as the teaching method provides more convenient user-interface for the mobile robot. In this study, for easily teaching the mobile robot, a study on the autonomous mobile robot with the function of speech recognition is tried. In speech recognition system, a speech recognition algorithm using HMM(Hidden Markov Model) is presented to recognize Korean word. Filter-bank analysis model is used to extract of features as the spectral analysis method. A recognized word is converted to command for the control of robot navigation.

  • PDF