Journal of the Korean Society for Industrial and Applied Mathematics
/
v.25
no.4
/
pp.149-161
/
2021
This study proposes a methodology for mission/path planning of an unmanned aerial vehicle (UAV) using an artificial potential field with the Markov Decision Process (MDP). The planning problem is formulated as an MDP. A low-resolution solution of the MDP is obtained and used to define an artificial potential field, which provides a continuous UAV mission plan. A numerical case study is conducted to demonstrate the validity of the proposed technique.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.2A
/
pp.139-148
/
2011
This paper presents the minimum-cost network selection scheme which determines the transmission instance in the multi-band maritime communication system, so that the shipment-related real-time information can be transmitted within the maximum allowed period. The transmission instances and the corresponding network selection process are modeled by a Markov Decision Process (MDP), for the channel model in the 2-state Markov chain, which can be solved by stochastic dynamic programming. It derives the minimum-cost network selection rule, which can reduce the network cost significantly as compared with the straight-forward scheme with a periodic transmission.
In this work we propose an energy-efficient transmission strategy for wireless sensor networks that operate in a strict energy-constrained environment. Our transmission algorithm consists of two components: a binary-decision based transmission and a channel-aware backoff adjustment. In the binary-decision based transmission, we obtain the optimum threshold for successful transmission via Markov decision process (MDP) formulation. A channel-aware backoff adjustment, the second component of our proposal, is introduced to favor sensor nodes seeing better channel in terms of transmission priority. Extensive simulations are performed to verify the performance of our proposal over fading wireless channels.
International Journal of Control, Automation, and Systems
/
v.1
no.3
/
pp.358-367
/
2003
We consider discrete-time factorial Markov Decision Processes (MDPs) in multiple decision-makers environment for infinite horizon average reward criterion with a general joint reward structure but a factorial joint state transition structure. We introduce the "localization" concept that a global MDP is localized for each agent such that each agent needs to consider a local MDP defined only with its own state and action spaces. Based on that, we present a gradient-ascent like iterative distributed algorithm that converges to a local optimal solution of the global MDP. The solution is an autonomous joint policy in that each agent's decision is based on only its local state.cal state.
Journal of the Korean Operations Research and Management Science Society
/
v.19
no.1
/
pp.201-206
/
1994
The linear search problem is concerned with finding a hiden target on the real line R. The position of the target governed by some probability distribution. It is desired to find the target in the least expected search time. This problem has been formulated as an optimization problem by a number of authors without making use of Markov Decision Process (MDP) theory. It is the aim of the paper to give a (MDP) formulation to the search problem which we feel is both natural and easy to follow.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.5
/
pp.1036-1057
/
2013
Wireless body area network (WBAN) is a promising candidate for future health monitoring system. Nevertheless, the path to mature solutions is still facing a lot of challenges that need to be overcome. Energy efficient scheduling is one of these challenges given the scarcity of available energy of biosensors and the lack of portability. Therefore, researchers from academia, industry and health sectors are working together to realize practical solutions for these challenges. The main difficulty in WBAN is the uncertainty in the state of the monitored system. Intelligent learning approaches such as a Markov Decision Process (MDP) were proposed to tackle this issue. A Markov Decision Process (MDP) is a form of Markov Chain in which the transition matrix depends on the action taken by the decision maker (agent) at each time step. The agent receives a reward, which depends on the action and the state. The goal is to find a function, called a policy, which specifies which action to take in each state, so as to maximize some utility functions (e.g., the mean or expected discounted sum) of the sequence of rewards. A partially Observable Markov Decision Processes (POMDP) is a generalization of Markov decision processes that allows for the incomplete information regarding the state of the system. In this case, the state is not visible to the agent. This has many applications in operations research and artificial intelligence. Due to incomplete knowledge of the system, this uncertainty makes formulating and solving POMDP models mathematically complex and computationally expensive. Limited progress has been made in terms of applying POMPD to real applications. In this paper, we surveyed the existing methods and algorithms for solving POMDP in the general domain and in particular in Wireless body area network (WBAN). In addition, the papers discussed recent real implementation of POMDP on practical problems of WBAN. We believe that this work will provide valuable insights for the newcomers who would like to pursue related research in the domain of WBAN.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.10
/
pp.3394-3408
/
2014
Conventional mobile state (MS) and base station (BS) association based on average signal strength often results in imbalance of cell load which may require more powerful processor at BSs and degrades the perceived transmission rate of MSs. To deal with this problem, a Markov decision process (MDP) for load balancing in a multi-cell system with multi-carriers is formulated. To solve the problem, exploiting Sarsa algorithm of on-line learning type [12], ${\alpha}$-controllable load balancing algorithm is proposed. It is designed to control tradeoff between the cell load deviation of BSs and the perceived transmission rates of MSs. We also propose an ${\varepsilon}$-differential soft greedy policy for on-line learning which is proven to be asymptotically convergent to the optimal greedy policy under some condition. Simulation results verify that the ${\alpha}$-controllable load balancing algorithm controls the behavior of the algorithm depending on the choice of ${\alpha}$. It is shown to be very efficient in balancing cell loads of BSs with low ${\alpha}$.
As a popular mathematical framework for modeling decision making, Markov decision process (MDP) has been widely used to solve problem in many engineering fields. MDP consists of a set of discrete states, a finite set of actions, and rewards received after reaching a new state by taking action from the previous state. The objective of MDP is to find an optimal policy, that is, to find the best action to be taken in each state to maximize the expected discounted reward of policy (EDR). In practice, MDP is typically unknown, so simulation-based policy improvement (SBPI), which improves a given base policy sequentially by selecting the best action in each state depending on rewards observed via simulation, can be a practical way to find the optimal policy. However, the efficiency of SBPI is still a concern since many simulation samples are required to precisely estimate EDR for each action in each state. In this paper, we propose a method to select the best action accurately in each state using a small number of simulation samples, thereby improving the efficiency of SBPI. The proposed method accumulates the simulation samples observed in the previous states, so it is possible to precisely estimate EDR even with a small number of samples in the current state. The results of comparative experiments on the existing method demonstrate that the proposed method can improve the efficiency of SBPI.
Journal of Korean Institute of Industrial Engineers
/
v.42
no.1
/
pp.65-72
/
2016
Curling is compared to the Chess because of variety and importance of strategies. For winning the Curling game, selecting optimal strategies at decision making points are important. However, there is lack of research on optimal strategies for Curling. 'Aggressive' and 'Conservative' strategies are common strategies of Curling; nevertheless, even those two strategies have never been studied before. In this study, Markov Decision Process would be applied for Curling strategy analysis. Those two strategies are defined as actions of Markov Decision Process. By solving the model, the optimal strategy could be found at any in-game states.
Ji, Min-Gi;Park, Jun-Keon;Kim, Do-Hyeong;Jung, Yo-Han;Park, Jin-Kyoo;Moon, Il-Chul
Journal of the Korea Society for Simulation
/
v.27
no.1
/
pp.1-13
/
2018
Earthwork planning is one of the critical issues in a construction process management. For the construction process management, there are some different approaches such as optimizing construction with either mathematical methodologies or heuristics with simulations. This paper propose a simulated earthwork scenario and an optimal path for the simulation using a reinforcement learning. For reinforcement learning, we use two different Markov decision process, or MDP, formulations with interacting excavator agent and truck agent, sequenced learning, and independent learning. The simulation result shows that two different formulations can reach the optimal planning for a simulated earthwork scenario. This planning could be a basis for an automatic construction management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.