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Abstract 
 

Conventional mobile state (MS) and base station (BS) association based on average signal 

strength often results in imbalance of cell load which may require more powerful processor at 

BSs and degrades the perceived transmission rate of MSs. To deal with this problem, a 

Markov decision process (MDP) for load balancing in a multi-cell system with multi-carriers 

is formulated. To solve the problem, exploiting Sarsa algorithm of on-line learning type [12], 

 -controllable load balancing algorithm is proposed. It is designed to control tradeoff 

between the cell load deviation of BSs and the perceived transmission rates of MSs. We also 

propose an  -differential soft greedy policy for on-line learning which is proven to be 

asymptotically convergent to the optimal greedy policy under some condition. Simulation 

results verify that the  -controllable load balancing algorithm controls the behavior of the 

algorithm depending on the choice of  . It is shown to be very efficient in balancing cell 

loads of BSs with low  . 
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1. Introduction 

With surge of smartphones, wireless data traffic has been increasing explosively. Network 

operators install more base stations(BSs) to increase network capacity and satisfy quality of 

service (QoS) for different types of data traffic. An alternative way to deal with this problem is 

to use more bandwidth. Multi-carrier operation or carrier aggregation for long term evolution 

advanced (LTE-A) is introduced to support efficient wideband usage [13]. As the number of 

BSs and the number of used frequency bands increase, load balancing takes a critical role to 

use wireless resource efficiently [14].  

  Load balancing (LB) algorithms have been developed for various types of wireless network 

with multiple carriers. For a code division multiple access (CDMA) system, load balancing 

algorithms were developed for distributing voice traffic over multiple carriers in the same 

frequency band [1] and in frequency bands of 800MHz and 1900MHz [2]. Joint scheduling 

and load balancing was also proposed for the efficient transmission of data traffic over 

multiple carriers in a CDMA network [3]. Son and et. al.  proposed a simple dynamic load 

balancing algorithm which jointly optimized fractional frequency reuse and load balancing [4]. 

Classifying access states as unloaded/balanced/overloaded, a cell association algorithm for 

wireless local area network (WLAN) was experimentally shown to increase the total wireless 

network throughput [5]. Joint scheduling and load balancing for the LTE-A system with 

carrier aggregation was developed to use radio resources distributed in frequency and space 

[6].   

  One of efficient methods to derive load balancing algorithm is to use dynamic programming 

(DP) which is a set of system equations defined over a problem composed of states, actions, 

and rewards [15]. A dynamic load balancing self-stabilizing distributed pseudo-tree 

optimization procedure (DLB-SDPOP) to balance the load of WLAN which exploits 

multiagent constraint optimization based on dynamic programming was shown to provide 

robust performance in a dynamically changing environment [8]. DP-based load balancing 

algorithm can be found to be applied to several different contexts outside of wireless network. 

DP-based power control for internet servers and data centers which implicitly balances loads 

from observing the system load and thermal status was formulated to capture the power-delay 

tradeoff [9].  Similarly, DP-based algorithm for turning on and off geometrically distributed 

servers for content delivery networks (CDNs) was developed to maximize energy reduction 

while minimizing the impact on client-perceived service availability [10].  

  There are also a few researches which are implicitely related to load balancing based on DP. 

For a heterogeneous network consisting of WLAN and 3G network, DP for markov decision 

process (MDP) formulated from a user-network association was solved using value iteration 

[11]. Even though it was characterized to particular scenario with an explicit model, it showed 

the potential of DP approach for load balancing in a cellular network. Similarly MDP-based 

vertical handoff algorithm was proposed with the objective function of maximizing the 

expected reward which is composited by bandwidth, delay and signaling cost [7]. However, it 

focused on the maximization of total reward rather than load balancing itself.   

  In this paper, we propose an load balancing alogirthm for multi-cells with multi-carriers 

called " -controllable load balancing algoithm" which explicitely allows the network to 

control tradeoff between the cell load deviation of BSs and the perceieved transmission rates 

of MSs with choice of  . To this end, we define MDP for load balancing and formulate DP. 

To solve the DP without an explicit model, Sarsa learning algorithm [12] of on-line type is 
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exploited. We also propose an   - differential soft greedy policy to make it robust to 

dynamicity of networks which is proved to be optimal in the sense that it converges to greedy 

policy under some conditions. Simulation results verify the efficiency of the proposed 

algorithm.  

  The following notations are introduced for the rest of the paper.  E  denote the expectation. 

)min(  and )max(   are the minimization and maximization of the function in the parenthesis 

respectively. Boldface lowercase letters imply vectors. Finally, A  denotes the number of 

elements in the set A , while a
 
is the absolute value of  a .

 
 

  The remainder of this paper is organized as follows. The basic assumptions and system 

models are made in section II. In section III, MDP for load balancing is defined and 

corresponding DP is formulated. To solve the DP for load balancing without an explicit model, 

 -controllable LB algorithm with  - differential soft greedy policy which exploits Sarsa 

learning algorithm is proposed, and its convergence is analyzed in section IV. To evaluate the 

performance of the proposed algorithm, simulation results are provided in section V. Finally, 

we make conclusions and comments on remaining issues for future research in section VI. 

2. System Model 

We consider a downlink multi-cell system with frequency reuse-1 where it uses multi-carriers 

to increase capacity with larger bandwidth. Different carriers can be adjacent or located at 

totally different bands. Even though the system model itself is transparent to how carriers are 

allocated to frequency bands, this research focuses more on the multi-carriers over totally 

different bands in the simulation. For the ease of analysis without losing generality much, we 

make several assumptions which limit the scope of this research and interpretation of research 

results.  

  First, MSs have initial association based on signal strength with a single BS and a single 

carrier, which is prevalent in a conventional cellular network. Second, all BSs are perfectly 

synchronized for all carrier frequencies, and all MSs have perfect synchronization with BSs. 

In a real synchronization system, all MSs and BSs work with tolerable synchronization error 

which scarcely degrades performance. Third, there exists a centralized processor which 

gathers perfect information on SINRs of all BS and all carriers, and the number of MSs served 

by each BS and each carrier, and executes load balancing algorithm based on it. In practice, 

even though it may not be possible to have perfect information, a centralized processor may 

have estimated and delayed information. Since the proposed algorithm use information 

depending on the average characteristics of channels and systems, delayed information may 

not have significant effect on performance. In addition, SINR estimation error may not be 

significant as long as the large number of samples are averaged out. 

  For a mutli-cell downlink system with multi-carriers, the SINR )(kf

b  of MS k in 

association with BS b  and carrier f  
can be expressed as  
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where )(kg f

b  is the received signal power at MS k  from BS b  with carrier f , B  is the 

number of BSs for each carrier, and 
2

n  is thermal noise power at each BS. In a multi-carrier 

network where there are large frequency gaps between different bands, MSs may have more 

frequent association with the carriers of lower frequency which have less propagation loss. In 

addition, the number of BSs supporting each carrier may not be the same for all carriers. In 

these contexts, there can be imbalance of the number of MSs among BSs. Thus reassociating 

MSs over BSs properply can reduce the imbalance of the load of BSs and improve the MS 

perceived transmssion rates of MSs.  

3. Problem Formulation 

In this section, we formulate the MDP for load balancing and define DP from MDP to find a 

proper load balancing which provides a tradeoff between the minimum perceived transmission 

rate of MSs and the cell load deviation of BSs depending on a parameter.  

 

3.1. Formulation of Markov Decision Process for Load Balancing  

MDP formulation is usually described by states, actions, transition probability and associated 

rewards. At each predefined period, a centralized processor executes a LB algorithm. To make 

problem simple, it is assumed that it can execute a forced hand off (HO) for at most one MS. 

That is, it chooses a candidate MS for the forced HO and decides whether it will execute the 

forced HO or not.  

  The central processor decides an action from an action space A . The elements of A  in this 

problem are associated with forced handoff decision. Decision of action depends on a current 

state from a state space S . The state information for load balancing can be identification 

number for each BS, perceived transmission rate of all MSs, number of MSs for each cell, and 

etc. States describe the system environment, which has effect on deciding action for each 

decision stage. Since forced HO can change loads of BSs and minimum perceived 

transmission rates of MSs, state 1ks  at the decision stage 1k may depend on the current 

state ks and action ka  taken at stage k . The state transition probability ],|[ 1 kkk aP ss 

completely describes interaction among current state, currently chosen action, and next state.  

  The transition from the current state with a selected action incurs reward ),( kk ag s . 

Depending how this reward is defined, the objective of the problem can be different. For the 

load balancing problem, it can be related to transmission rate, the number of MSs served by 

each BS, signaling cost, degree of congestion of wired connection with core network, or 

degree of occupying processors. The actual rewards depend on how to choose an action for a 

given state. A sequence of controls ku  which map states ks  into )( kkk ua s  is called a 

policy which is denoted by },,,{ 110  Nuuu  . For a given policy, one can define the 

expected total reward of the policy as  
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where 0s  is an initial state, and  is a discount factor with 10   which controls the 

contribution of future rewards to the current reward. Depending on the transition probability 
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and the policy, )( 0s
J  is determined. One can determine the optimal policy for the expected 

reward as follows 

00

* )(minarg ss  forJ 
                                         (3) 

 

When the it is a stationary process, optimal policy can be determined from the corresponding 

optimal control 
*u  as },,,{ **** uuu   

 

3.2. Dynamic Programming for Load Balancing 

In this subsection, we explicitly define the elements of the MDP for load balancing in a 

multi-cell network with multi-carriers. States, actions, and reward are defined in more detail. 

DP for the embodied MDP is also formulated to derive an algorithm from it.  

We consider two different types of states. The state space of the first type 8S  is defined as  
 

},,,},,2,1{,},,2,1{,|),,{( 847362518218 HssWssFssBsssssS         (4) 
 

where F is the number of carriers in a cell, 1s  and 2s  are the indices of serving BS and 

serving carrier respectively, 3s  and 4s  are states associated with the minimum perceived 

transmission rate of MS and the cell load associated with the serving BS, 765 ,, sss , and 8s are 

correspondingly defined for the target BS. W and H  have wN and hN  elements which are 

associated with quantized minimum perceived transmission rate of MS and cell load of BS 

respectively. One can express the states of the minimum perceived transmission rate and the 

cell load in numerous ways. Rather than setting the states as values themselves, we make them 

represent a normalized form in the following way.  
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where 0t  and 1t represent serving BS and target BS respectively, )(tb  and )(tf  are the 

indices of BS and carrier for a given t , 
)(

)(

tf

tbA is the minimum perceived transmission rate of 

MS in the BS )(tb with carrier )(tf  , and Am , and Nm  are the averages of minimum 

perceived transmission rates and cell loads. One can easily verify that these quantities range 

from 0 to 1, which makes it possible to define quantized states more simply. With these 

quantities, the state space of the second type 2S  can be defined as follows. 
 

},|),{( 21212 RssssS                                              (6)  
 

where  the elements of the set R  is the discrete levels of the composite value r  which is 

defined to be  

hwr )1(                                                    (7) 
 

 

Since both w  and h  range from 0 to 1, r also has value within the same range. It is noted that 

the number of feasible states for 8S is significantly larger than 2S  as long as rN , the number 
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of elements in R  has similar value as  wN or hN . Efficiency of simplified state space 
2S will 

be addressed further with simulation results.  

  When the load balancing algorithm operates, it changes MS/BS association or remains 

unchanged depending on the action and the current state. Since it is assumed that there can be 

at most one forced HO at each decision stage for simplicity, the control space, A  can be 

defined as  

},{ NOYESA                                                         (8) 
 

where YES, and NO indicate whether the algorithm executes the forced HO at the decision 

stage or not.  

The action chosen under current state incurs reward. Defining the reward structure for DP 

usually depends on the object of control. One of most important factors defining load will be 

the number of MSs served by each BS. When MSs are evenly associated with each BS, it can 

be considered to be a perfect state for load balancing in the perspective of cell load. While this 

scheme may evenly balance the load among BSs, balancing load may degrade the perceived 

transmission rate of MSs. It will be particularly more problematic when MSs are not uniformly 

located over service region, and radio channel environments are different among BSs. Thus it 

will be advantageous to have a load balancing algorithm such that it can provide a tradeoff 

between the cell load deviation of BSs and the perceived transmission rates of MSs with a 

parameterization. To realize this characteristic, reward is defined as follows. 
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Controlling   can make the reward provide a tradeoff between the cell load deviation of BSs 

and the perceived transmission rates of MSs. When 1 , the object of DP is to maximize the 

minimum perceived transmission rate, while it is to equalize the loads of BSs with 0 .  

For the optimization problem of (2) formulated from MDP, a set of system equation for 

optimality  can be developed as [15] 
 

  
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This is a Bellman equation for MDP, which is often called as "Dynamic Programming".  This 

set of system equations are usually solved with value iteration or policy iteration [15]. 

However it requires the knowledge of state transition probability. This probability can be 

analytically calculated for some specific simplified model [11]. However, it is very difficult to 

find one for a general cellular system. Thus, rather than finding the explicit model of state 

transition probability, a model free approach will be used throughout this paper. 

4.  - Controllable Load Balancing Algorithm 

When information on the model of MDP is not available, learning algorithms are often used to 

learn the model from observation [12]. In this section, we develop Sarsa-learning based LB 

algorithm to be applicable to any cellular environment with on-line learning. Since the reward 

function in (9) depends on the parameter  , we call it as  -controllable LB algorithm 

throughout this paper.  
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4.1.  - Controllable LB Algorithm 

While value in (2) is defined for each state, the value of action in association with states is 

known as the Q-factor which is defined as 
 


'

*

'

* )]','(min],|'[),(),(
s

sssss aQaPagaQ a                           (11) 

 

 By definition, it requires knowledge on the state transition probability. One of well known Q

-factor approximation algorithms is Sarsa algorithm which updates Q value and policy 

continuously [12]. The Sarsa algorithm for (11) can be expressed as  [12] 
 

),(),,((),()1(),( 111   kkkkkkkkkkk aQagaQaQ sssss                  (12) 
 

where k  is a step size which needs to be properly selected to converge to 0 with a proper rate. 

When implementing Sarsa algorithm, it observes reward associated with the current action and 

the subsequence stat. Then, it decides next action based on the current policy. The policy is 

usually designed so that it can provide tradeoff between exploration and exploitation. 
-greedy, or soft max policy [16] are often used for Sarsa algorithm. However, the  -greedy 

policy does not take into account on Q value while the soft max policy may take random 

action with relatively large probability when maximum Q  value is not significantly larger 

than others. To overcome issues in the existing policy, we propose  -differential soft greedy 

policy of which   varies with control stage k  as follows 
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where   is a time constant for averaging the normalized difference of Q  value, oldQ  is the 

Q  value of  the state and the action visited at the control stage k while newQ  is the update of 

oldQ with equation (12), and a  is a parameter with positive value which controls the effect of 

the normalized difference of  Q  
on  . As a  gets close to 0, it takes exploitation more often, 

while it does exploration more often with large a . Whatever a  may be, as Q  value gets 

stable,  will get smaller. In a cellular network, it is usually non-stationary environment since 

some new MSs may appear and some existing MSs may close connection. This may 

necessitate changes in Q value in response to change in system environment. In this case, the 

 -differential soft greedy policy is likely to increase chance of exploration accordingly.  

  Finally, we need to define how to determine a candidate MS for forced HO, and target BS and 

carrier. r
 
in (7) has relatively high value when the minimum perceived transmission rate of 

MSs is low, and the number of MSs served by BS is larger. Since r can be calculated for each 

BS, we determine the BS and the carrier serving the candidate MS for the forced HO first, 

which has the largest r . Then, the candidate MS is determined to be one which has the 

minimum perceived transmission among MSs served by the BS and the carrier. Similarly the 

target BS and the carrier is determined such that they have the smallest r . 

  It is noted that the proposed algorithm is transparent to how many MSs are selected for forced 

HO at each stage, even though only one MS was considered for the implementation in this 
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paper. For the practical implementation of this algorithm, the execution period of the 

algorithm need to be set properly. It will depend on the length of transmission slot, the 

computational capability of a system, backhaul bandwidth, dynamicity of data traffic, and etc. 

Alternatively one may change the number of MSs for forced HO at each stage. Thus, the 

execution period of the proposed algorithm is likely to be implementation and environment 

specific. Since, we focus on the characterization of the proposed algorithm, the optimized 

determination of this period is left for future research. 

 

4.2. Convergence of  -differential soft greedy policy 

Since the proposed  -controllable LB algorithm is Sarsa type learning algorithm, Q  

value can converge to optimal value if the learning policy optimally chooses an action as the 

number of decision stages approaches to infinity. The Sarsa type algorithm is known to 

converge if the learning policy is greedy in the limit with infinite exploration (GLIE) [12]. [12] 

proved that Bolzmann policy and  -greedy policy are GLIE for some specific conditions. 

Exploiting GLIE, the convergence of the  -controllable LB algorithm with  -differential 

soft greedy policy can be expressed in the following way.  

Proposition 1:  -differential soft greedy policy is GLIE when there exists 'l  such that 
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Proof: Let ),( an s  be the number of visits to the state s  with choice of action a . The 

probability of choosing non-optimal action at control stage k  can be expressed as 

Ae kad
/)1(


  . It is well known that the sum of sequence lc /  where c  is an arbitrary 

positive constant approaches to infinite as the number of summation terms goes to infinite. 

Exploiting this property, the  -differential soft greedy policy will be GLIE when there exist 

'l  such that 
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),(min

1log(
1

, an

c

a
d

as

k
s

 for 

'),(min , lanas s .                                                                                                                    ■ 

Even though the proposition-1 proves that the  -differential soft greedy policy is GLIE in 

some condition, one can not tell analytically whether the  -differential soft greedy policy is 

GLIE or not, since there is no explicit way to analyze decaying rate of average normalized 

differential Q  value. Alternatively one may set parameter a  large enough to make the 

probability of choosing non-optimal action non-negligible for a long time.  

5. Simulation Results 

In this section, we evaluate the performance of the proposed algorithm through simulations. 

Two different simulations are considered. First, we characterize the basic properties of the 
-controllable LB algorithm applied to a very simple case where there are two cells and two 

carriers. The effects of related parameters, and convergence properties will be addressed with 
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this simulation. Second, the  -controllable LB algorithm will be executed over conventional 

2 tier 19 hexagonal cells with 3 sectors per cell to evaluate its performance in a more realistic 

cellular environment where two carriers in different frequency bands are available. 

 

5.1 Two Cells 

Two cells with two carriers are considered to characterize the behavior of the proposed 

algorithm. Two BSs are located at (-1,0) and (1,0) over two dimensional space, and MSs are 

uniformly distributed within unit circle with center at origin. It is assumed that one carrier 

frequency is two times higher than the other carrier frequency. Single input single output 

(SISO) flat Rayleigh fading channels with log normal shadowing with standard deviation of 

7dB and the path loss exponent of 3.5 are generated for each link between a MS and a BS. For 

each drop, 20 MSs are generated over 5000 frames with independent fading channels. We also 

average out the performance over 500 drops. Since we are more interested in the 

characterization of the algorithm,  -controllable LB algorithm are executed at every frame 

with assumption that perfect average SINR is available at the central processor. Since we also 

execute the algorithm at each frame, rather than calculating the average perceived 

transmission rate of MSs from each sample, we treat 
)(
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nominal perceived transmission rate where )(kF  and )(kB  are the indices of the carrier 

and the BS serving the MS k .  

  In the formulation of MDP for load balancing, we defined the two different types of state 

spaces, 2S  and 8S . If the numbers of possible states for w , h , and r  are defined to be the 

same, the total number of states for 8S  is likely to be much greater than 2S . In Fig. 1 and Fig. 

2, we compare the performances of the proposed algorithm for MDPs with differently defined 

state spaces, 2S and 8S . In this particular case 8743 ,,, ssss  in 8S  and 21,ss  in 2S  are set to 

have 10 different states composed of {0.05,0.15,...,0.95}, which results in 1600 times larger 

number of states for the MDP with 8S . We also set the exponent a  for the  -differential soft 

greedy  policy as 1000 so that it can have learning period for a long time which is required for 

embedded Sarsa algorithm to converge with this policy. It can be observed that when   is 

small, load deviation which is defined as 
2

1 1
)())/(1( N

f

b

B

b

F

f
mNBF   

 is small. 

However, spectral efficiency at 5% percentile of the perceived transmission rates of MSs is 

much smaller than one without load balancing, since the proposed algorithm tries to balance 

the cell load without considering spectral efficiency at 5% percentile of  perceived 

transmission rates of MSs. It is also noted that whatever   may be, the load deviation gets 

smaller than one without load balancing. It is clear that   controls the tradeoff between the 

perceived transmission rate of MSs located at cell edge and cell load deviation of BSs. The 

MDP with 8S uses information on minimum perceived transmission rate of MSs and cell load 

for serving and target BSs and carriers. Thus, the optimal action may be different for each cell 

and carrier. On the contrary, the MDP with 2S  uses composite state information constructed 

similarly to reward. Thus it is expected that if the MDP with 2S are better designed in harmony 

with reward, it may provide comparable performance to the performance of one with 8S  

despite of significantly smaller number of states. Fig. 1 and Fig. 2 confirm that this is the case 
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with the  -controllable LB algorithm constructed with
2S . They show the similar 

performance of perceived transmission rate and cell load. This may imply that knowledge on 

serving and target BSs and carriers with the predefined rule of selecting candidate MS for the 

forced HO may not help much to improve the performance of load balancing. Based on these 

results, we focus on evaluating the  -controllable LB algorithm of the MDP with 
2S for the 

subsequent simulations. 

  The proposition-1 tells that exponent a  need to be large enough for the Q  values of the 

-controllable LB algorithm with  -differential soft greedy policy to converge. Fig. 3 and Fig. 

4 compare the performance of the  -controllable LB algorithm for different exponents. It can 

be observed that even though the algorithm with 10a  has slight performance degradation, 

there is no discernable performance difference among different exponents of 100, 1000, and 

10000. To investigate the convergence characteristics of the  -differential soft greedy policy 

for different exponents,   values for increasing control stages are shown in Fig. 7 where 0d  

is 0.5  and   is 0. The  -differential soft greedy policy converges faster to a greedy policy 

with smaller a . It can be observed that as a  increases every time by 10 folds, the graph of   

values appears to be shifted with several hundreds of control stages. This implies that the 

average normalized difference of Q  is reduced by order of one tenth with several hundreds 

control stages. To show how fast Q  value converges when 1000a , Q  values for which 

the algorithm makes the most frequent visits for each case is plotted in Fig. 8. As expected 

from the convergence of  , Q  value converges fast.  

  The performance of the proposed algorithm may have some dependency on how finely states 

are discretized. Fig. 7 and Fig. 8 compares the performance for the different discretizations of 

states. It can be observed that it does not have much dependency on how finely states are 

discretized. Since the predefined rule for choosing a candidate MS for forced HO which is 

embedded in the  -controllable LB algorithm does not consider serving and target BSs and 

carriers, the effect of the discretization of states may not be significant. 
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Fig. 3. Spectral efficiency at 5% percentile of        Fig. 4. Load deviation of the  -controllable 

perceived transmission rate of MSs with                 LB algorithm with different exponent a  

the  -controllable  LB algorithm for                     of  - differential soft greedy policy 

              different exponent a  of  - differential 

              soft greedy policy 

 
Fig. 5.  of  - differential soft greedy policy           Fig. 6. Convergence characteristics of Q  values 

            for different exponent a  

 
Fig. 7. Spectral efficiency at 5% percentile of          Fig. 8. Load deviation of the  -controllable 
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the  -controllable  LB algorithm for                       discretization of  states 

              different discretization of  states 
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5.2. 2 tier 19 cells with 3 sectors 

To evaluate the performance of the proposed algorithm in a more realistic environment, we 

consider a 2 tier cellular wrapped around system with 19 cells. Each cell has 3 sector and every 

BS and MS is assumed to have one antenna. 10 MSs per sector are geometrically uniformly 

distributed. The non-line of sight (NLOS) urban micro channel of 3GPP SCM model [17] with 

velocity of 30km/h is used for simulation. To mimic the multi-carrier operation of LTE system, 

two carriers with operating frequencies of 850MHz and 1850MHz are considered. Bandwidth 

is assumed to be 20MHz. Proportional fair scheduling is exploited with scheduling period of 1 

msec. Even though load balancing may be performed with period of order of every several 

minutes or so, due to extensive simulation time, it is performed every 10 msec with 

assumption that information required for load balancing is perfectly available. Even though 

this assumption may be rather unrealistic, it may not have much effect on the characterization 

of the proposed algorithm. We also set exponent a  as 1000, and 1s  and 2s in 2S  are set to 

have 10 different states composed of {0.05,0.15,...,0.95}. For each given  , the proposed 

algorithm was tested for 5 drops with 10000 frames. We consider two different cases. The first 

one is that the number of BSs supporting each carrier is same. In this case, imbalance in cell 

loads often results from frequency dependent path loss and shadowing. In the second case, 9 

randomly chosen cells do not support the carrier of higher frequency. The imbalance of cell 

loads is likely to be due to interaction among carrier frequency, shadowing, and available 

number of carriers, which incurs the state of more severely imbalanced cell loads. As a 

baseline performance, the load balancing scheme of [4] which was designed for maximizing 

the perceived transmission rate was considered. The on-line implementation of [4] for 

multi-carrier operation can be described as follows. 
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where  )(G  is a function representing multi-user diversity gain, and  
f

bk  is a user selected for 

forced HO at the cell b using carrier f.  

  Fig. 9 shows the load deviation with different  . Similarly to the characteristics in the case 

of two cells, the load deviation increases as   increases while it is zero when 0  for the 

first case. The reason not to have zero load deviation for the second case is due to the 

indivisible number of MSs for the given number of BSs and carriers rather than severely 

unbalanced initial loads. The number of MSs served by every BS is found to be 6 or 7 for the 

second case when 0 . The load deviation with 1  is marginally smaller than one with 

8.0 . It is conjectured that maximizing minimum perceived transmission rate may help to 

reduce load deviation by moving MSs located in cell edge to less crowded cells more often. 

This trend is found to be similar for both cases. However, in the second case of some BSs 

supporting only one carrier, relatively higher load deviation than the first case for the same   

can be observed. It is also noted that the proposed scheme outperforms [4] for cell load 

deviation when  is small while  [4] provides the slight better performance when    is larger 

than 0.6. 

  The perceived transmission rates of MSs for the first case are compared for different   and 

different percentiles in Fig. 10. The perceived transmission rate at 5% and 10% percentile 
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degrades significantly as   gets close to zero, since the  -controllable algorithm forcefully 

associates MSs with BSs without considering much about the perceived transmission rates of 

MSs  to reduce the cell load deviation. As   increases, the perceived transmission rates at 5% 

and 10% percentile larger than that of [4] by 3~10%. Similar characteristics can be found for 

the second case in Fig. 11. It is also noted that there is considerably large improvement on the 

perceived transmission rate at 90% percentile especially for the second case when   is small. 

There can be a tradeoff between scheduling opportunity and multi-user diversity (MUD) gain 

depending on the number of MSs served by BS. Moving one MS from  a crowded cell to other 

cell with small number of MSs can benefit MSs in the crowded cell, in terms of the perceived 

transmission rates. Even though the perceived transmission rates of the MSs in the target cell 

may degrades due to increase in the number of MSs served by the cell, the number of MSs 

located closely to the target cell is likely to be smaller than one in the crowded cell. Thus, these 

two facts may explain the noticeable increase of the perceived transmission rate at 90% 

percentile for the second case. Observing Fig. 9, 10, and 11 reveals that the proposed scheme 

has better performance both in the cell load deviation and perceived transmission rate when 

  is around 0.45. In addition, the proposed scheme provide a good control of tradeoff 

between the cell load deviation and perceived transmission rate compared to [4].   

  Simulation results verify that the  -controllable LB algorithm can have tradeoff between 

the perceived transmission rates of MSs located at cell edge and cell load deviation of BSs 

from choosing  . While the proposed algorithm exhibits remarkable performance in 

equalizing cell loads, the improvement on the perceived transmission rates of MSs located in 

cell edge is very limited regardless of choice of  . Similar results can be found in [4] when 

LB is applied to homogeneous multi-systems with full buffer traffic model and uniform MS 

distribution. In this case, LB algorithms have to seek for gain from the tradeoff between more 

scheduling opportunities and channel quality degradation, which is found to be very limited. 

However, it is noted that the  -controllable LB algorithm can still provide slight better 

perceived transmission rate with reduced imbalance in cell load by properly choosing  . 
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Fig. 11. Perceived transmission rate with the -controllable algorithm in a 2 tier multi-cell system 

when only one carrier is available to 9 cells (dash-dotlines are the performance of [4]) 

6. Conclusions 

In this paper, we formulated MDP for load balancing in a multi-cell system with multi carriers. 

To solve the MDP, we proposed the  -controllable algorithm exploiting Sarsa learning. To 

have efficient tradeoff between exploration and exploitation in the learning process of the 
-controllable LB algorithm,  -differential soft greedy policy was proposed and proved to be 

an asymptotically optimal policy under some condition. The simulation results verified that 

the  -controllable algorithm with  -differential soft greedy policy could have tradeoff 

between cell load deviation and perceived transmission rate depending on the choice of  . It 

was also found to be particularly efficient in balancing cell loads.  

  There are still remaining issues associated with this research which calls for further future 

research. The implementation of the proposed algorithm requires a central processor. Even 

though computational complexity and communication overhead is not so large, it may be more 

efficient and robust if it is implemented in a distributed way. The load balancing algorithm can 

be more tailored to the specific system environment. Recently, small cell technologies are 

developed for beyond 4G system such as carrier aggregation and cell range expansion [14]. 

Algorithms considering the embedded technologies may improve the performance of load 

balancing further in the future wireless cellular system. 
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