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Abstract 

 
Wireless body area network (WBAN) is a promising candidate for future health 

monitoring system. Nevertheless, the path to mature solutions is still facing a lot of 

challenges that need to be overcome. Energy efficient scheduling is one of these challenges 

given the scarcity of available energy of biosensors and the lack of portability. Therefore, 

researchers from academia, industry and health sectors are working together to realize 

practical solutions for these challenges. The main difficulty in WBAN is the uncertainty in 

the state of the monitored system. Intelligent learning approaches such as a Markov 

Decision Process (MDP) were proposed to tackle this issue.  A Markov Decision Process 

(MDP) is a form of Markov Chain in which the transition matrix depends on the action 

taken by the decision maker (agent) at each time step. The agent receives a reward, which 

depends on the action and the state. The goal is to find a function, called a policy, which 

specifies which action to take in each state, so as to maximize some utility functions (e.g., 

the mean or expected discounted sum) of the sequence of rewards. A partially Observable 

Markov Decision Processes (POMDP) is a generalization of Markov decision processes 

that allows for the incomplete information regarding the state of the system. In this case, 

the state is not visible to the agent. This has many applications in operations research and 

artificial intelligence. Due to incomplete knowledge of the system, this uncertainty makes 

formulating and solving POMDP models mathematically complex and computationally 

expensive. Limited progress has been made in terms of applying POMPD to real 

applications. In this paper, we surveyed the existing methods and algorithms for solving 

POMDP in the general domain and in particular in Wireless body area network (WBAN). 

In addition, the papers discussed recent real implementation of POMDP on practical 

problems of WBAN. We believe that this work will provide valuable insights for the 

newcomers who would like to pursue related research in the domain of WBAN. 
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1. Introduction 

The recent advancements in hardware miniaturization facilitate the realization of many 

applications especially in the medical and health fields. Recently, Wireless Body Area 

Networks (WBANs) attracted significant attention. It consists of small, intelligent devices 

attached on or implanted in the body which are capable of establishing a wireless 

communication link. These devices provide continuous health monitoring and real-time 

feedback to the user or medical personnel [1]. These networks typically have two types of 

devices: sensors and actuators. Sensors are used to acquire or measure certain conditions of 

the human body externally such as body temperature, or internally such as glucose level in 

the blood. On the other hand, the actuators are concerned in the next step to be taken after 

examining the recorded measurements. These two devices sometimes work in conjunction 

with each other. For example, for a diabetic patient who requires insulin injection, when the 

sensor measures the glucose level, the actuator can be equipped with a built-in reservoir 

and pump which administers the correct dose of insulin to be given based on the glucose 

level measurements by the sensor [1]. WBAN has numerous possible applications; some 

are shown in Fig. 1. 

 

 
Fig. 1. WBAN Applications [9] 

 

The Wireless Body Area Networks can be differentiated from the regular Wireless 

sensor networks by the following distinguished characteristics [1]. Firstly, the devices used 

are very small (less than 1cm
3
) and have limited energy resources. Secondly, although the 

wanted lifetime is expected to extend to several years or even decades for implanted 

devices, for most devices, it is impossible to recharge or change the batteries. Thirdly, all 

devices are equally important and no redundant devices are available. Fourthly, to cope 

with health concerns and minimize interference, an extremely low transmit power per node 

is needed. Fifthly, the surrounding environment (i.e. human body) is a (very) lossy medium 

[2] and consequently, the waves are attenuated considerably before they reach the receiver. 

In addition, because the devices are located on the human body that can be in motion, the 

deployed WBANs should be robust against frequent changes in the network topology.  
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More importantly, WBAN should be very dependable [1][3] where high reliability, low 

delay and stringent security mechanisms are required. Finally, the devices operating in 

WBANs are often very heterogeneous and they may have very different demands or may 

require different resources of the network in terms of data rates, power consumption and 

reliability [1]. 

Having stated the above challenges, the literature is rich with works trying to find 

solutions for these problems. Actually, several papers have surveyed these works [4]-[9] 

The authors in [5] surveyed the existing and emerging wireless communication 

technologies and critical parameters for the system design. While the authors in [6] focused 

on surveying the recent energy-efficient medium access control (MAC) protocols for 

wireless body area networks (WBANs) along with a number of open research challenges 

with regard to prospects of medium access techniques and other issues. In [7],  a survey of 

wireless Body Area Network (WBAN) was preseneted and the authors  introduced the 

notion of a virtual doctor server (VDS) in existing WBAN architecture. This archticture 

supports various patient health care services and it keeps the historical data about the 

patient, generate the daily tips and advices for him, call the doctor or emergency squad if 

required and can provide first aid assistance instructions on patient or any of his close 

relative's PDA's. In [8][9], the authors surveyed the expected challenges in realizing 

WBANs for diverse applications.  

However, according to the authors’ knowledge, there is no published work that surveys 

the recent literature for new techniques or methods that solve the related optimization 

problems. One of the main challenges that face the WBAN designer is the high uncertainty 

in the status of the monitored system which leads to major difficulties in decision making 

process related to optimizing the activities of the implanted sensors, for example. Partially 

observable Markov decision process (POMDP) is a generalization of Markov decision 

processes (MDPs) that provide a mathematical framework for modeling decision-making 

in situations where outcomes are partly random and partly under the control of a decision 

maker. It provides a rich framework for agent planning under uncertainty [10][11]. 

Implantation of devices like biosensors in human body is a critical operational issue and 

application that requires efficient and accurate monitoring and management. MDPs have 

been applied in different facets of life such as medicine, education, quality control, 

scheduling, data communication, scheduling and so on [12]. In most of these domains, the 

full and exact state of the system is known. Specifically, amongst the many applications are 

optimizations of software in mobile phones [13]. The authors formulate the optimization of 

resources such as battery life in a mobile phone as a decision processes and proposed a 

dynamic programming techniques to solve the problem. In [14], the authors presented an 

optimal power and rate allocation control in multiple input and multiple output (MIMO) 

wireless system over Markovian fading channels.   Earlier works for the use sensors for 

patient health monitoring include; lifeGuard [15] codeBlue [17], and Ubimon [18]. 

However, energy management and the environmental constraints are challenges facing 

these systems.  To tackle this energy resource management problem, MDPs was introduced 

in the effort to design optimally performing system. In [19], MDPs was used to design 

MDP controllers for optimal energy utilization and information gathering  in a health 

monitoring sensor network. However, the author concluded that POMDPs has greater 
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representational power in the quest to manage this sort of wireless networks.  Due to arrays 

of possible applications, various algorithms, methods and techniques have been used or 

proposed to solve this type of Markov decision processes.  

1.1  A Motivating Problem  

In this section, we present an example of  WBAN problem that can be formulated and 

solved using POMDP. Consider the problem of implanting a subcutaneous biosensor in a 

human body.  This biosensor in required to measure some physiological and metabolic vital 

signals  such as temperature, pulse rate and glucose level. The operation and monitoring of 

these biosensors need to be accurate and efficient due to the critical nature of the 

application. The biosensor communicates wirelessly with a base station outside the body.  

The state of the system can be model as three variables vector (temperature, Energy and 

channel state which changes over time. The objective is to minimize the expected total 

energy consumption and maximize the number of measurements (or samples) subject to 

constraints such as the maximum temperature increase and quality of service. In order to 

study the above system, it is modeled as a POMDP since its state cannot be completely 

observed. The formulated model is solved using available techniques to obtain optimal 

policy, then these policies will be characterized and new heuristics are proposed based on 

reinforcement learning [20]. 

 
Fig. 2. Implanted and wearable biosensor in human body  

There are limited research works on planning and management of biosensors, 

considering the increase in research for the design and development of biosensors and the 

possible increase in area of related applications. Therefore, there is a need for a 

comprehensive research on the optimization approaches of this class of wireless sensors. 

Most of the existing research efforts are dedicated to traditional wireless sensor network. 

Biosensors, in addition, to the general features of wireless sensor network, they have 

additional external factors from the environment such as temperature that can affect its 

performance. The background of this work is found in [22]. In this work, the author 
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modeled the problem as Markov Decision Process (MDP) where the state of the system is 

assumed to be deterministic, but this is not the case in real life situations where decisions 

are made based on the observation of the current state which unknown apriori. The most 

suitable model is to use partial observable markov decision process. 

The remaining part of this article is organized as follows; Section 2 described in detail, 

the POMDPs and some solutions techniques. In Section 3, the use of POMDPs framework 

in wireless sensor network is presented. Section 4 presented two recent real systems that 

employed POMDP for optimizing the perfromance of WBANs. An overview of 

applications of POMDPs in other fields of human endeavor was provided in section 5, 

while the challenges facing this framework is presented in section 6 and finally section 7 

concluded the article. 

2. Partially Observable Markov Decision Process (POMDPs) 

A partially observable Markov decision process (POMDP) is a generalization of Markov 

decision processes that provide a mathematical framework for modeling decision-making 

in situations where outcomes are partly random and partly under the control of a decision 

maker. It provides a rich framework for agent planning under uncertainty [10][11]. 

A POMDP can be used to model an agent making a real world sequential decision after a 

set of actions under uncertainty to achieve a goal [11].  It is a model for deciding how to act 

in ``an accessible, stochastic environment with a known transition model'' [23]. A 

discrete-time POMDP models the relationship between an agent and its environment. A 

POMDP is described by the following set of parameters:  

 

 a set of states  S ={s1, s2, s3…, s|s| } 

 a set of actions  A= {a1, a2, a3…a|A|} 

 a set of observations  O= {o1, o2, o3,…,o|o|} 

 a set of transition probabilities  T= (si, a,sj)= P(sj| si, a ) 

 a set of observation probabilities  β (si, a, o) = p(oi| sj, a).  

 a set of rewards  R: S X A  R 

 a discount factor  γ Є [0, 1] 

 an initial belief  bo(s) 

 

Formally, a POMDP is specified as a tuple (S, A, O, T, β, R), where S is a set of states, A 

is a set of actions, and O is a set of observations. In each time step, the agent lies in some 

state s in S; it takes some action a in A and moves from si   to a new state sj. Due to the 

uncertainty in action, the end state si   is modeled as a conditional probability function T(si, 

a, sj)= P(sj| si, a ) which models the effect of action and gives the probability that the agent 

transits to sj, after taking action a from state s. The agent then relates an observation to 

information on its state. Due to the uncertainty in observation, the observation result o in O 

is also modeled as a conditional probability function β (s, a, o) = p(o | s, a). At each step, the 

agent receives a real-value reward model β (s, a), if it takes action a from state s, and the 
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agent’s goal is to maximize its expected total reward by choosing a suitable sequence of 

actions. A reward function R is defined as R: S x A  R . This function is used to influence 

the agent’s characteristics. In POMDP, the objective is to plan, planning means computing 

an optimal policy that maximizes the expected total discounted or long term reward over an 

infinite horizon. Since the state of the agent’s state is not completely visible, that is, 

partially observable, this leads us to rely on belief b, which is a probability distribution over 

S. The initial belief is denoted as bo(s). 

A POMDP policy π maps a belief b to a prescribed action a in A. The expected reward 

for policy π starting from belief b is defined as 

 

                ( )    [∑    (     )    
 
   ]                                         (1) 

 

Where γ < 1 is the discount factor. The optimal policy π 
*
 is obtained by optimizing the 

long-term reward. 

           
 (  )                                                (2) 

 

Where b0 is the initial belief. The optimal policy, noted π 
*
 yields the highest expected 

reward value for each belief state, compactly represented by the optimal value function, 

noted V
*
.  The value function V

* 
(b) is a solution to Bellman optimality equation as follows. 

 

  ( )        [ (   )    ∑  (     )  ( (    ))   ]                  (3) 

 

Exact solutions to POMDP problems are intractable, and various approximate solutions 

techniques were developed. 

 
Fig. 3. The general interaction between agent and environment [15][21] 
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2.1 A review of Solution Techniques for POMDP 

In this section, we present an overview of classical algorithms for solving POMDP and 

investigate the improvements so far in both exact and approximate methods. Solving a 

POMDP exactly is an intractable problem. Due to computational explosion of results, most 

efforts are tailored toward the management of the constraints to avoid the exponential 

complexity increase.  The developed methods and algorithms can be classified under 

various categories such as exact value iteration, policy iteration, witness and greedy 

solution. Some of the approximate algorithms are either optimal or suboptimal. The entire 

algorithms would be based on the above classification. Also, most POMDP algorithms 

depend on dynamic programming; some efforts have been exerted in designing algorithms 

for updating the dynamic programming. 

Classical methods for solving POMDP are value iteration [24], approximate (heuristic) 

solution techniques in POMDP aimed at reducing the complexity [25]. Also, a fast-point 

based algorithm for POMDP was proposed in [26], it ensures that in each iteration of value 

function, the new value functions are upper bounded. Another promising technique is 

approximate Linear programming for solving hybrid factored MDPs [27]. The first exact 

method for solving POMDP is called One pass [27], here, the algorithm chooses an 

arbitrary belief point and defines a set of constraints and it constructs vectors for each point. 

In this case, the constraint in the believe space is guaranteed to dominate. The region 

defines the intersection of three regions. A vector is constructed for that region and the 

strategy is best for the belief point and some nearby belief point. 

In [12], an approximate algorithm called Enumeration algorithm that concentrates on 

how to generate sets of points by generating all possible sets of vectors by selecting action 

for each observation in the vectors. In this case, a large number of vectors will be generated 

and some might be useless. The useless ones can be eliminated to decrease the computation 

time. An extension to the enumeration algorithm is Incremental pruning [27] using 

interleaved generation and redundancy testing breaking up the dynamic programming 

update of the value function and the maximizing set of alpha vectors is determined from 

bottom to top leading to iterative purging of smaller set of alpha vectors.  Grid based 

Algorithm [28] is another example of approximation algorithm in which the value function 

is determined for sets of points and interpolated to evaluate the optimal action that would 

be encountered for other belief state that are not in the grid point. Linear Support [29], is a 

modification of [10] idea by choosing less strict constraints and not focusing on actions and 

future course of action . It simply picks a point, generate vectors for the point and check if 

the region of the vectors is correct for all corners. Corners mean vertices of the region. In 

[30], the author presented a different idea called Witness algorithm by focusing on the 

point that the vector is not dominated, it concentrates on the best value function. Instead of 

finding V and prune it down. It focused on finding V* (optimal policy) directly. 

In Point based Algorithms [31], a set of belief points are first sampled from the belief 

simplex (by letting the agent interact with the environment) and then planning is performed 

on these points only. In [32], a randomized version of point-based value iteration was 

presented. Here, the key idea is that, in each value iteration step, it can improve the value of 

all points in the belief set by only updating the value and its gradient of a subset of the 
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points, and we select these belief points in a randomized greedy manner. In [33], similar to 

[26], it selects some representative points in the belief space and iteratively applies value 

update to those points. 

2.2  Some Variations and Improvements of POMDPs Solution Methods 

Most of the existing algorithms are based on traditional value function iterations algorithms 

that try to minimize each point in the belief space search.  Researchers, in recent years in 

the quest for optimal solution continued to explore various approaches to prune down the 

belief space in order to reduce the computational cost. In this section, we present several of 

those enhancements and modifications tailored towards specific applications.  

In [34], the authors, presented a Monte Carlo based approximation methods to POMDP. 

Their method does not require analytical tractability; the system is modular and can be 

treated as plug and play. It is inherently non-myopic allowing tradeoff between short terms 

for long term reward. This approximation was adopted for adaptive sensing. In [35], 

Region-based Dynamic programming reduced the linear programs in cross sum pruning, 

and hence reducing the computational complexity. This was achieved by dividing the 

belief space into smaller regions and perform independent pruning in each region. 

In Parallel roll out [36], It is a novel approach proposed to generalize the roll out algorithm 

[37], by rolling out a set of policies rather than single policy. This aimed at the class of 

problems and forms a system path through which multiple heuristics policies are 

automatically combined to a new system policy to enhance performance. POMDPs 

algorithms operate with limited amount of memory which led to weak theoretical guaranty. 

In [38], they provided approach that addresses the space requirements and guaranty that 

optimal results can be maintained. Policy search algorithms [39][40][41][42] have also 

been devised to concentrate on the computation of belief states, these have succeeded to 

some large extent but the problem with policy search algorithm is that it could be data 

inefficient; many policy search algorithms have difficulty using data from its previous 

computed policies. But for policy compression [43][44][45] focuses on relevant belief 

space but also allows the use of relevant training data to estimate the effect of any policy. 

3. POMDP and Wireless Body Area Network 

Generally, sensors deployments require high cost of maintenance, energy conservation; 

hence, there is a need to optimize power to increase the total number of measurement over 

a given period of time. In most of these applications, the states are not fully observable, 

sometimes even are not observable at all. There are many factors affect the performance of 

sensors such as energy, efficiency, power etc. These factors by nature constitute random 

processes. Depending on application or user defined performance measure, each state may 

have different definition. For example, in measuring coverage, one can look at a sensor 

state and whether it is active or inactive, good or  bad, on or off, etc. POMDP provides a 

rich mathematical structure for planning these types of problems under uncertainty. The 

cardinal issue in sensor scheduling is how to attain optimal tradeoff between the cost of 

sensor usage and the sensor performance and the goal of the system is to maximize user 

defined goals [46]. 
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In order to minimize energy consumption, sensor networks require a scheduling scheme 

to reduce the number of active sensors at any given time while monitoring the quality of 

network [46]. In general, this is an optimization problem [47]. In [48], the sensors are 

partitioned into disjoint set, with each set expected to cover the target. They provide a 

heuristic to solve the mixed linear programming problem that arises from their model. But 

the challenges of these techniques were that it cannot be applied dynamically. Similarly, in 

[49], Voronoi diagrams were used to determine the hull points to place the sensors in order 

to maximize coverage and enhance battery life time. But in [41], self-scheduling of duty 

eligible rules was applied, where a node can turn itself on or off by observing it nearest 

neighbor. It turns itself off, if its nearest neighbor is active and provides an optimal 

coverage. In [50], the authors defined a threshold called k-cover (predefined constant) 

where a set of sensors less than k is determined through neighbor communication. In this 

approach, a central controller is assigned the duty of monitoring the coverage. 

3.1 Biosensors 

Biosensors can be described as a sensor that integrates a biological element with 

physiochemical transducers to produce an electronic signal proportional to a single analyte 

(substance or chemical constituent that is of interest such as glucose) which is then conveyed to a 

detector [51]. Figure 4 shows the block diagram for a biosensor.  A biosensor can be 

implanted or worn. (See figure 5). This class of sensors has a wide range of potential 

applications such as in health care both (clinical and laboratory,) for measurement of 

metabolite, diabetes insulin therapy, drug administration and artificial pancreas in 

implantable glucose sensors.  Industrial process control in the monitoring of bioreactor, and 

military applications are another domain of applications. For detail discussion on the 

applications of biosensor see [52].  

The following paragaphs reviews the management of biosensor considering the 

environmental constraints. In [53], thermal aware routing protocol is proposed. This 

protocol is to balance the temperature amongst the biosensors, to avoid what the authors 

called “hot spot”. That is, if the temperature of a biosensor node exceeds a specified 

threshold. But the protocol, did not take into consideration the effect of the wireless 

channels and energy. 
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Fig. 4. Component of a biosensor [22]. 

 

In [54], the authors exploit the notion of leadership clusters to calculate the optimal 

temperature in an implanted biosensor network. They used the Penne’s heat equation and 

finite domain time difference method to calculate the temperature increase and specific 

absorption rate. The scheme is referred to as Temperature Increase Potential (TIP).  

Genetic algorithm and TIP are combined for the computation of temperature increase.  

However, they did not incorporate the effect of the wireless channel and the energy in the 

model. 

The management problem of rechargeable biosensor in a temperature sensitive 

environment like human body was considered in [55]. Optimal number of sample was 

considered with the constraint of effect of temperature on tissue and the heat generated 

while recharging the biosensor. The problem was formulated as Markov Decision Problem 

(MDP) with numerical and simulation result presented. Though, an interesting result was 

obtained, however, the formulation of the problem with MDP, with assumption that all 

states are deterministic does not address the real life situation of noisy sensors and channels. 

In [56], the authors modeled the dynamic scheduling of biosensors to manage the heat 

generated. The scheduling problem was modeled as MDP. Though, heat effect was 

considered in this work, but modeling the scheduling problem as MDP does not incorporate 

the noisy behavior of the sensor and the channels. 
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3.2 Implantable Wireless Body Sensor Networks 

Wireless body sensor is a miniscule, subcutaneous sensors implanted around the tissue or 

organ to detect changes and communicate to a wireless device to alert the patient [53]. 

These sensors are implanted in human body to monitor biophysical activity (see Fig. 4). 

The implantation requirement brought about additional challenges in addition to the 

general requirement of wireless sensor networks. Each sensor node is limited in size, 

memory-storage constraint, power, communication capabilities. Furthermore, temperature 

and the properties of the environment that human body metabolic dynamics such as blood 

flow, heartbeat, and pulse rate will affect the performance of this type of sensors.  

Therefore, there is a need for optimizing its functionalities such as optimal scheduling for 

its activities, energy utilization, coverage, response time, temporal accuracy, and effective 

sample rate etc [58]. Also, there is a need to optimize related hardware issues such as size, 

power consumption, etc. In addition, implantable biosensor has additional requirements of 

simplicity, low detection limit, speed, precision, ruggedness, stability, room for 

improvement, utility and sensitivity. This field of research is still in its infancy with a lot of 

challenges and open problems [57]. 

 

 
Fig. 5. Implanted biosensor in human body [22]. 

3.3 Problem Specific POMDP Models for Wireless Sensor Scheduling 

In [46], the authors considered the problem of scheduling sensors deployment in an area to 

detect moving objects. In order to avoid waste of energy and maintain high coverage, only 

k-sensors out of n sensors are selected to work at a particular time. The object movements 

are modeled as a finite state Markov chain and assumed states can only be observed 

through noisy channels. Also, to be able to detect moving objects, their distances are 

reported to a central controller to do data fusion and trilateration. The following 

subsections describe in detail the POMDP modeling process. In each model, we need to 

define the states and transitions model, the observation model and the reward model. 

3.3.1 The POMDP System Model 

The model is presented in [46] as follows. The objective is to find an optimal policy that 

selects k sensors out of n deployed sensors while maximizing the coverage and the 
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probability of object detection.  

3.3.2 States and Transitions Model 

The deployed sensors are modeled by n variables s1, s2, ...sn. Each variable is assumed to 

have two states [ON,OFF], where ON refers to the working state and OFF refers to an idle 

state for energy saving. The initial state of a sensor is ON. The location of tracking object is 

represented by variable X.  X is assumed to be independent of the other variables, as the 

moving object’s path is not influenced by the state of the sensor network. Due to lack of 

knowledge about the car’s intended path, it is assumed to follow a random waypoint 

motion pattern, in which the car can either stay in its current position, or move to 

neighboring ones. The space is divided into grids and allows only one object to stay in a 

cell at each time. The location of the moving object is represented by the states of variable 

X. The action space is simply composed of the   
  possible assignments for selecting k 

sensors from n deployed sensors without order. The movement of object and sensor 

selection process is modeled as two Markov chains with one-step transition probability 

matrix: 

 

  
  (   )      

   (  
        

   )                               (4) 

where a stands for an action, p and q are two states belonging to the state space Ii. 

3.3.3 Observation Model 

GPS is used in wireless sensor network, to determine the location of object directly. By 

using the received signal strength (RSSI) a sensor can determine the distance to the object. 

The controller utilized the estimated distance to find the location of object using 

trilateration or other data fusion methods. The errors and noise in the detection process is as 

a result of the uncertainty in the positioning. In this case, they mapped such a positioning 

process to the observation model of the POMDP. It is also assumed that the observation 

space O has the same size as the state space X, where each observation o ЄO indicates an 

observation on the location of the moving object. For the detection probability, based on 

the detection techniques many detection coverage models have been proposed for different 

event scenarios. In this work, the author adopts the probabilistic coverage model. They 

considered a general signal propagation model where the signal parameter (e.g., the sound 

pressure of a sound source) fades along with the signal propagation Depending on the 

hypothesis of whether the target is present (H1) or not (H0), the readings at the sensor si are 

given by 

H0 :xi= ni 

H1 :xi = 
 

  
 + ni                                                                                           (2) 

Where θ is the fading exponent,   
 . = d α (si, x) is the Euclidean distance between the 

sensor si and the space point. x, and ni is the measurement noise. It is often assumed that the 

noise follows a Gaussian distribution with zero mean and variance   
 . The overall 
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detection probability by a set of sensors for position x was computed as follows using 

decision fusion: 

  
    ∏ (    

 
) 

                                                    ( )  

Note that   
 
 depends on the distance between a sensor and the space point. The threshold 

can be set and defined such that a point is covered by K sensors if its overall detection 

probability is not less than a threshold. At this point, the probabilistic coverage model can 

be converting to a Boolean coverage model [46].  

3.3.4 Reward Model 

In [46], they considered two optimization objectives, detection probability and coverage. 

Detection probability refers to the concept that k sensors were chosen to minimize the 

uncertainty regarding the moving object’s true location. Coverage means that in each 

simulation time the k active sensors can give a reasonable detection probability for the 

moving objects. Because of the probabilistic coverage model, in order to avoid an 

extremely small detection probability, a low boundary of detection probability was set to 

0.1. The moving object will be considered as lost when the detection probability is lower 

than 0.1 and corresponding to the low boundary; the sensor range in the Boolean coverage 

model is set to 11 m. In order to maximize the coverage, a reward function that assigns a 

constant positive reward 1 when the current location of moving object is inside the sensing 

range of any selected k active sensors. Such a reward function will guide the POMDP to 

avoid losing the observation of moving object. By dividing the area into grids, the reward 

was determined as follows: 

 

Rcov= ∑ ( )         

 ( )  {
    

   
           

                                                    (4) 

 

Where ω is the threshold of detection probability. When there are sufficient sensors 

covering the moving object, only k sensors having the highest detection probability will be 

selected to save the energy. A positive reward was defined as  Rdet(x, {si}) for a (grid, sensor) 

tuple (x, {si}) as following: 

     ∑(  ∏(    
 )

 

   

)                                     ( )   

3.3.5 Discussions 

In this section, we analyze the issues that arise from the formulation of the above sensor 

scheduling problem discussed above. For the sake of simplicity, the authors assumed the 

discrete case which is represented using Gaussian random variables. The space also, is 

divided into grids and only allows object to stay in a cell at each time. This assumption will 

minimize the search space but it affects the accuracy of the developed policies. Similarly, 
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many the researchers opt to make the problem tractable by limiting the dynamics of these 

assumptions are made to reduce the general problem of POMDP to a simpler tractable 

problem of MDP. 

4. POMDP in Real Implementation of WBAN 

 

Having discussed the therotical basis for POMDP in the above sections, we shall present 

here two real expermintations [59][61] of employing POMDP to optimize the performance 

of WBANs. 

4.1 The KNOWME WBAN [59][61]  

The KNOWME network targets applications in pediatric obesity. The system is a 

multimodal system which is developed to track an individual’s level of stress, physical 

activity, as well as other vital signs simultaneously. Such data must also be anchorable to 

context, such as time of day and geographical location, which provides a greater 

understanding of how the external environment impacts health. The KNOWME network is 

a fruit of a multiyear collaboration between communications engineers, computer systems 

designers, and preventive health researchers.  

The KNOWME network is composed of a three-tier architecture as shown in Fig. 6. The 

WBAN layer or sensor layer is the first tier, which wirelessly provides physiological 

signals. The second tier is the mobile phone, and it acts as a data collection hub for the 

external sensor data. Initial processing is executed in the mobile phone and it provides 

simple feedback to the user instantly. A back-end server is the last tier and it can provide 

additional processing as well as data storage.  

The problem is modeled as a partially observable Markov decision process (POMDP) to 

capture the system’s sequential nature. POMDPs model the dynamics of physical state 

change via a Markov chain (Fig. 7b). Dynamic programming (DP) and greedy search 

strategies are employed to optimize the trade-off  between classification error and energy 

cost, and significant energy gains are obtained. The POMDP framework is using realistic 

assumptions and the monitored time-evolving activity is known only through noisy 

observations. In addition, this system assumes that the fusion center (mobile phone) is 

energy constrained, and not the sensor nodes, and thus, the sensor selection process is 

optimized to meet this criterion. However, due to DP high complexity, a new approximate 

time-sharing sensor selection scheme based on cost functional properties was devised. The 

developed system was implemented and evaluated on real-world data collected from an 

implanted WBAN. 
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Fig. 6. The KNOWME system architecture flow diagram and screen shot from the sedentary 

behavior analyzer implemented on the mobile platform [61]. 

4.2 CARER [60] 

CARER (Continuous Activity Recognition with Embedded Reasoning) is a software 

sensing support system that supports dynamic sensor scheduling algorithms by exploiting 

knowledge of contexts. CARER system makes real-time dynamic decisions as to whether 

to obtain additional sensor measurements for state classification.  

                  
Fig. 7.  a) System diagram of sensor selection algorithm; b) Markov chain of seven physical 

activities improved by using the output policy of POMDP [61] 

 

To achieve this objectives, CARER employs Partially Observable Markov Decision 

Process (POMDP) to implement the sensors scheduling algorithm. POMDP provides a 

direct method for reducing energy demand while ensuring classification accuracy. The 

algorithm stochastically determines when a new measurement is necessary to estimate the 

activity in the next episode, and adjusts sensor usage accordingly. 
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Fig. 8.  CARER System [60]. 

4.2.1 POMDP Formulation 

The process consists of a hidden Markov model (HMM) that models the activity transitions 

(e.g. sitting, walking) and a control policy based on finite-state machine (FSM) that 

controls the availability of Bluetooth sensors (see Fig. 8). The objective is to accurately 

detect activity patterns in different parts of the body given some resource constraint. 

In POMDP formulation, the following spaces are defined: the State Space  |S|, the 

Observation Space  |Ω| and the Action Space, |A|. The State Space  |S| contains the set of the 

activities of interest. The Observation Space, |Ω| contains the set of observation symbols 

extracted from sensor measurements. The Action Space, |A|, consists of the set of all 

available sensor controls. (e.g., activate and de-activate Bluetooth sensors). Sensor 

measurements are made at each discrete time step (or sensing epoch) t, sensor, given that 

the sensors are active (at-1= activate). At the end of the epoch, an observation symbol ot is 

generated, and it is used to compute the hidden state st. Simultaneously, the FSM maintains 

an internal state nt and generates a new sensor decision at that determines whether sensors 

are to be activated next. POMDP estimates the posterior state probabilities based on the 

corresponding observation symbol. The control policy is formulated as a constrained 

POMDP where the constraint is the average energy consumption per epoch  as shown in Eq 

6. The corresponding POMDP model parameters are as follows: 

S = {Static,RightArm,RightLeg,WholeBody} 

A = {Deactivate, Activate} 

Ω = {0, 1, ..., |S| − 1} 

π = {N, ψ,η } 

 

 (       )  
     (       )

     (  )
 

 (            )  {
 (         )               

 

 
          

                                   (6) 
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Where N is the set of nodes n ∈ N in the FSM, η = P(nt+1|nt, at, ot+1), and  ψ = P(at|nt). η is 

responsible for maintaining the internal state information regarding the control policy, 

while ψ determines the relative frequency of different sensor controls a ∈ A. 

A real experiment was conducted for three days (2 days for training and one day for 

testing) using three MicroLEAPs worn on the right wrist, waist, and right ankle to capture 

the activities of interest. The mobile device serves as the data aggregator, and continuously 

logs all sensor data for both training and testing. The experinetal results have shown that 

the implemented POMDP approach improves the overall classification accuracy for a 

given energy consumption budget by using the state dependencies as additional 

information for classification. 

5. Challenges and Open Issues 

In this section, we discuss some of the major challenges facing the application of POMDP 

in real life WBAN applications.  Fully observable MDP have been applied in so many areas 

as we earlier mentioned in [12], but not so for POMDP due to numerous challenges, most 

of the research ended up as published papers in reference journals. Though most real life 

problems are not fully observable which made POMDP a good candidate but because of 

some of these challenges, they have not been largely harnessed. The complexity of 

interaction between the state and information makes the modeling problem a difficult task. 

POMDP has difficulty in handling some problems with inherited peculiar characteristics.  

While most of the models assume finite decision point approach, most of real life problems 

are not. POMDP applications are data intensive and new approaches need to be developed 

to minimize the collected information as well as retrieving this information. Data mining 

techniques would help in this domain. In addition, artificial intelligent techniques such as 

reinforcement learning would help in striking a balance between the accuracy required by 

the application and the quality of collected information.  

MDP has been used a lot for solving and approximating the solution of POMDP. 

However, it ends with simplistic cases which are far away from the real life problems.  

Hence, new directions should be explored to enhance the formulation models and 

representation. 

On the other hand, the limited number of problems with known solutions along with lack 

of efficient algorithms to solve POMDP problem make the practitioners less enthusiastic in 

adopting these approaches which also hinder the development is this area. 

The future WBANs should be dependable where a conjunction of reliability, security 

and availability is provided [2]. Furthermore, building WBANs according to hierarchical 

configuration [60] where sensors can be partitioned into different layers, with each layer 

providing different granularities can help in achieving better coordination and 

determination of the state of the monitored system. 
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6. Conclusion and Future Work 

Wireless body area network (WBAN) is gaining continuous attraction from industry and 

academia for its potential health applications. However, the realization of this type of 

network is facing a lot of challenges especially in managing the power supply as well as 

power consumption. The Partially Observable Markov Decision Processes (POMDPs) 

could provide the means for achieving these objectives. In this paper, we have presented 

the traditional approaches for solving POMDP and several enhancements along with 

recently developed methods and techniques in the quest to provide optimal solution 

techniques for POMDP. Also, we addressed some real implementations of POMDP for 

health applications. Finally, we described the challenges facing the usage of POMDP. We 

hope this survey will pave the path for advanced research in this important and critical 

fieldireless body area network (WBAN) is gaining attraction from industry and academia 

for its potentail health applications. 
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