• Title/Summary/Keyword: Markov Chain Monte Carlo (MCMC)

Search Result 121, Processing Time 0.022 seconds

Markov Chain Monte Carlo Simulation to Estimate Material Properties of a Layered Half-space (층상 반무한 지반의 물성치 추정을 위한 마르코프 연쇄 몬테카를로 모사 기법)

  • Jin Ho Lee;Hieu Van Nguyen;Se Hyeok Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2023
  • A Markov chain Monte Carlo (MCMC) simulation is proposed for probabilistic full waveform inversion (FWI) in a layered half-space. Dynamic responses on the half-space surface are estimated using the thin-layer method when a harmonic vertical force is applied. Subsequently, a posterior probability distribution function and the corresponding objective function are formulated to minimize the difference between estimations and observed data as well as that of model parameters from prior information. Based on the gradient of the objective function, a proposal distribution and an acceptance probability for MCMC samples are proposed. The proposed MCMC simulation is applied to several layered half-space examples. It is demonstrated that the proposed MCMC simulation for probabilistic FWI can estimate probabilistic material properties such as the shear-wave velocities of a layered half-space.

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm (MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법)

  • Hwang, Jung-Won;Kim, Nam-Hoon;Yoon, Jeong-Yeon;Kim, Chang-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

Performance of Image Reconstruction Techniques for Efficient Multimedia Transmission of Multi-Copter (멀티콥터의 효율적 멀티미디어 전송을 위한 이미지 복원 기법의 성능)

  • Hwang, Yu Min;Lee, Sun Yui;Lee, Sang Woon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.104-110
    • /
    • 2014
  • This paper considers two reconstruction schemes of structured-sparse signals, turbo inference and Markov chain Monte Carlo (MCMC) inference, in compressed sensing(CS) technique that is recently getting an important issue for an efficient video wireless transmission system using multi-copter as an unmanned aerial vehicle. Proposed reconstruction algorithms are setting importance on reduction of image data sizes, fast reconstruction speed and errorless reconstruction. As a result of experimentation with twenty kinds of images, we can find turbo reconstruction algorithm based on loopy belief propagation(BP) has more excellent performances than MCMC algorithm based on Gibbs sampling as aspects of average reconstruction computation time, normalized mean squared error(NMSE) values.

Improved MCMC Simulation for Low-Dimensional Multi-Modal Distributions

  • Ji, Hyunwoong;Lee, Jaewook;Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A Markov-chain Monte Carlo sampling algorithm samples a new point around the latest sample due to the Markov property, which prevents it from sampling from multi-modal distributions since the corresponding chain often fails to search entire support of the target distribution. In this paper, to overcome this problem, mode switching scheme is applied to the conventional MCMC algorithms. The algorithm separates the reducible Markov chain into several mutually exclusive classes and use mode switching scheme to increase mixing rate. Simulation results are given to illustrate the algorithm with promising results.

Remaining Useful Life Estimation of Li-ion Battery for Energy Storage System Using Markov Chain Monte Carlo Method (마코프체인 몬테카를로 방법을 이용한 에너지 저장 장치용 배터리의 잔존 수명 추정)

  • Kim, Dongjin;Kim, Seok Goo;Choi, Jooho;Song, Hwa Seob;Park, Sang Hui;Lee, Jaewook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.895-900
    • /
    • 2016
  • Remaining useful life (RUL) estimation of the Li-ion battery has gained great interest because it is necessary for quality assurance, operation planning, and determination of the exchange period. This paper presents the RUL estimation of an Li-ion battery for an energy storage system using exponential function for the degradation model and Markov Chain Monte Carlo (MCMC) approach for parameter estimation. The MCMC approach is dependent upon information such as model initial parameters and input setting parameters which highly affect the estimation result. To overcome this difficulty, this paper offers a guideline for model initial parameters based on the regression result, and MCMC input parameters derived by comparisons with a thorough search of theoretical results.

Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling (마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석)

  • Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

Development of a Markov Chain Monte Carlo parameter estimation pipeline for compact binary coalescences with KAGRA GW detector (카그라 마코브 체인 몬테칼로 모수 추정 파이프라인 분석 개발과 밀집 쌍성의 물리량 측정)

  • Kim, Chunglee;Jeon, Chaeyeon;Lee, Hyung Won;Kim, Jeongcho;Tagoshi, Hideyuki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.3-52
    • /
    • 2020
  • We present the status of the development of a Markov Chain Monte Carlo (MCMC) parameter estimation (PE) pipeline for compact binary coalescences (CBCs) with the Japanese KAGRA gravitational-wave (GW) detector. The pipeline is included in the KAGRA Algorithm Library (KAGALI). Basic functionalities are benchmarked from the LIGO Algorithm Library (LALSuite) but the KAGRA MCMC PE pipeline will provide a simpler, memory-efficient pipeline to estimate physical parameters from gravitational waves emitted from compact binaries consisting of black holes or neutron stars. Applying inspiral-merge-ringdown and inspiral waveforms, we performed simulations of various black hole binaries, we performed the code sanity check and performance test. In this talk, we present the situation of GW observation with the Covid-19 pandemic. In addition to preliminary PE results with the KAGALI MCMC PE pipeline, we discuss how we can optimize a CBC PE pipeline toward the next observation run.

  • PDF

Bayesian Analysis for a Functional Regression Model with Truncated Errors in Variables

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.77-91
    • /
    • 2002
  • This paper considers a functional regression model with truncated errors in explanatory variables. We show that the ordinary least squares (OLS) estimators produce bias in regression parameter estimates under misspecified models with ignored errors in the explanatory variable measurements, and then propose methods for analyzing the functional model. Fully parametric frequentist approaches for analyzing the model are intractable and thus Bayesian methods are pursued using a Markov chain Monte Carlo (MCMC) sampling based approach. Necessary theories involved in modeling and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed methods.