최근 양계업에 막대한 피해를 끼치는 조류독감은 한국에서 수천억원의 거대한 경제적 손실을 초래하였다. 병원균의 전염경로를 파악할 수 있다면 막대한 손해를 끼치는 생물학적 피해의 확산을 막고 일부 지역으로 제한하는데 큰 도움이 될 것이다. 병원균 DNA 서열의 계통학적인 분석을 통하여 감염된 숙주들을 방향성이 있는 연결선으로 연관짓는 전염 계통수를 얻을 수 있다. 지난 10여년간 유전적 데이터뿐만 아니라 역학 데이터를 이용한 전염 계통수 추론의 방법론적 발전이 이루어졌다. 이에, 본 연구에서는 전염 계통수 추론 방법을 이용하여 지난 2014년 한국에 발병한 고병원성 조류독감 H5N8에서 유래한 DNA 서열을 재분석하였다. 당시, H5N8 바이러스는 전라북도에서 시작하여 지역적으로 접해있는 4개의 지역으로 확산되어 나갔던 것으로 알려져 있다. 전염 계통수를 추론하는 베이지언 통계 방법인 Markov chain Monte Carlo를 반복적으로 시행하고 이를 종합하여 철새 외래종과 국내종 조류 숙주들의 전염 계통수를 추정하였다. 비록 연결선의 불확실성은 높았으나 추정된 전염 계통수를 통하여 당시 H5N8 바이러스는 전라북도에서 시작하고 충청남도를 거쳐 경기도로 퍼져나간 것을 확인할 수 있었다. 사육하는 오리와 같은 국내종 조류는 전염 계통수의 말단 노드에 위치하는 것으로 추정되었다. 이러한 결과를 통하여 야생 철새종이 2014년 한국의 H5N8 조류독감의 감염 매개자로 주된 역할을 하였다는 것을 재확인하였다.
기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 1일 지속강우, 2일 지속강우, 3일 지속강우, 4일이상 지속강우로 구분하여 강우의 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하였고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.
이 논문에서는 지진 하중을 받는 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석 방법을 제시한다. 수평하중에 대해서 면외 변위가 발생하는 꼬인 삼각대지지 구조의 기하학적 특성과 지반의 비선형성을 포함한 지반-말뚝 상호작용을 고려하기 위한 구조물의 3차원 동적 유한요소 모델을 제시하였다. 지진신뢰성 평가를 위해 재현주기별 인공지진파를 사용한 시간이력 해석을 통해 말뚝 두부의 수평변위로 정의된 한계 상태식에 대하여 파괴확률을 산정하였다. 비선형 시간이력해석에 의한 한계상태식 평가를 고려하여 효율적으로 신뢰성 해석을 하기 위해 Markov Chain Monte Carlo 샘플링 방법을 적용한 부분집합 시뮬레이션 방법의 적용을 제시하였다. 제시한 방법은 2차원 모델 및 정적해석만으로는 정확한 결과를 도출할 수 없는 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 신뢰성 평가 및 설계기준 개발에 활용될 수 있음을 보였다.
본 연구에서는 사용자가 입력한 멜로디에 따른 반주 음악을 자동으로 생성하는 방법을 제시한다. 시작되는 코드는 사용자의 멜로디에 의해서 생성이 되며, 그 다음 코드들은 코드들간의 전이확률이 정의되어있는 마르코프 체인(markov chain)의 확률 테이블을 이용하여 연속적으로 생성된다. 확률 테이블은 기존 음악의 샘플 데이터를 강화학습(reinforcement learning)을 이용하여 학습된다. 또한 실시간으로 재생되는 반주 코드는 매 상태 마다 주어지는 보상 값을 통해 더 나은 행동을 취할 수 있도록 학습해 나간다. 멜로디와 각 코드들간의 유사성은 피치 클래스 히스토그램을 이용하여 계산된다. 본 기술을 사용하여 주어진 사용자 입력에 조화로운 반주 코드의 자동 생성이 가능하다.
본 논문에서는 마코프 이항 회귀 모형의 시차가 알려져 있거나 그렇지 않은 경우일 때, t-링크 함수를 갖는 종단적 마코프 이항 회귀 모형을 제시한다. 일반적으로, 이항 회귀 모형에서는 로직 모형이나 프로빗 모형이 주로 사용된다. t-링크 함수는 t 분포가 자유도가 커질수록 정규분포로 근사하기 때문에 프로빗 모형을 대신 더 많은 유연성을 위해 사용될 수 있다. 게다가 마코프 회귀모형은 종단 자료에 대해 사용될 수 있다. 우리는 마코프 회귀 모형의 시차를 결정하기 위해 베이지안 방법을 제시하고자 한다. 특히, 각 모델의 차수에 대해 알고 있는 경우에는 DIC를 기준으로 모델 비교를 실시하였다. 모델의 차수에 대해 모르는 경우에는 가능한 모델들의 사후 확률을 이용하였다. 복잡한 베이지안 계산을 해결하기 위하여 Albert와 Chib (1993), Kuo와 Mallick (1998)과 Erkanli 등 (2001)의 방법을 이용하여 모델을 재설정하였다. 제안하는 방법은 시뮬레이션 데이터와 Somer 등 (1984)에 의해 조사된 인도네시아 어린이 종단 데이터에 적용했다. 마코프 이항 회귀모형의 순서에 대해서 아는 경우와 모르는 경우를 각각 가정하여 최적의 모델을 알아보기 위해 MCMC 방법을 사용하였다. 또한, 매트로폴리스 해스팅 알고리즘의 수렴성을 점검하기 위해 Gelman과 Rubin의 진단을 이용했다.
본 연구에서는 관심거리가 되고 있는 마코프인쇄 몬테칼로(Markov Chain Monte Carlo, MCMC)방법에 근거한 공간 확률난수 (spatial random variate)생성법과 깁스표본추출법(Gibbs sampling)에 의한 베이지안 분석 방법에 대한 기술적 사항들에 관하여 검토하였다. 먼저 기본적인 확률난수 생성법과 관련된 사항을 살펴보고, 다음으로 조건부명시법(conditional specification)을 이용한 공간 확률난수 생성법을 예를 들어 살펴보기로한다. 다음으로는 이렇게 생성된 공간자료를 분석하기 위하여 깁스표본추출법을 이용한 베이지안 사후분포를 구하는 방법을 살펴보았다.
Journal of the Korean Data and Information Science Society
/
제13권2호
/
pp.227-234
/
2002
In this paper, we consider hierarchical Bayes generalized linear models for the analysis of longitudinal count data. Specifically we introduce the hierarchical Bayes random effects models. We discuss implementation of the Bayes procedures via Markov chain Monte Carlo (MCMC) integration techniques. The hierarchical Baye method is illustrated with a real dataset and is compared with other statistical methods.
The marginal distribution of X is considered when (X, Y) has a truncated bivariate t-distribution. This paper mainly focuses on the marginal nontruncated distribution of X where Y is truncated below at its mean and its observations are not available. Several properties and applications of this distribution, including relationship with Azzalini's skew-normal distribution, are obtained. To circumvent inferential problem arises from adopting the frequentist's approach, a Bayesian method utilizing a data augmentation method is suggested. Illustrative examples demonstrate the performance of the method.
In recent years, theoretical properties of Bayesian nonparametric survival models have been studied and the conclusion is that although there are pathological cases the popular prior processes have the desired asymptotic properties, namely, the posterior consistency and the Bernstein-von Mises theorem. In this study, through a simulation experiment, we study the finite sample properties of the Bayes estimator and compare it with the frequentist estimators. To our surprise, we conclude that in most situations except that the prior is highly concentrated at the true parameter value, the Bayes estimator performs worse than the frequentist estimators.
Communications for Statistical Applications and Methods
/
제8권2호
/
pp.427-434
/
2001
In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.