• Title/Summary/Keyword: Markov Chain Model

Search Result 560, Processing Time 0.02 seconds

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

Markov Chain Monte Carol estimation in Two Successive Occasion Sampling with Radomized Response Model

  • Lee, Kay-O
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.211-224
    • /
    • 2000
  • The Bayes estimation of the proportion in successive occasions sampling with randomized response model is discussed by means of Acceptance Rejection sampling. Bayesian estimation of transition probabilities in two successive occasions is suggested via Markov Chain Monte Carlo algorithm and its applicability is represented in a numerical example.

  • PDF

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Gaussian Approximation of Stochastic Lanchester Model for Heterogeneous Forces (혼합 군에 대한 확률적 란체스터 모형의 정규근사)

  • Park, Donghyun;Kim, Donghyun;Moon, Hyungil;Shin, Hayong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-95
    • /
    • 2016
  • We propose a new approach to the stochastic version of Lanchester model. Commonly used approach to stochastic Lanchester model is through the Markov-chain method. The Markov-chain approach, however, is not appropriate to high dimensional heterogeneous force case because of large computational cost. In this paper, we propose an approximation method of stochastic Lanchester model. By matching the first and the second moments, the distribution of each unit strength can be approximated with multivariate normal distribution. We evaluate an approximation of discrete Markov-chain model by measuring Kullback-Leibler divergence. We confirmed high accuracy of approximation method, and also the accuracy and low computational cost are maintained under high dimensional heterogeneous force case.

Markov Chain Approach to Forecast in the Binomial Autoregressive Models

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.441-450
    • /
    • 2010
  • In this paper we consider the problem of forecasting binomial time series, modelled by the binomial autoregressive model. This paper considers proposed by McKenzie (1985) and is extended to a higher order by $Wei{\ss}$(2009). Since the binomial autoregressive model is a Markov chain, we can apply the earlier work of Bu and McCabe (2008) for integer valued autoregressive(INAR) model to the binomial autoregressive model. We will discuss how to compute the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$ when T periods are used in fitting. Then we obtain the maximum likelihood estimator of binomial autoregressive model and use it to derive the maximum likelihood estimator of the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$. The methodology is illustrated by applying it to a data set previously analyzed by $Wei{\ss}$(2009).

Bayesian Inference for Mixture Failure Model of Rayleigh and Erlang Pattern (RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구)

  • 김희철;이승주
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.505-514
    • /
    • 2000
  • A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced mixture failure model of Rayleigh and Erlang(2) pattern. This data augmentation approach facilitates specification of the transitional measure in the Markov Chain. Gibbs steps are proposed to perform the Bayesian inference of such models. For model determination, we explored sum of relative error criterion that selects the best model. A numerical example with simulated data set is given.

  • PDF

Analytic Throughput Model for Network Coded TCP in Wireless Mesh Networks

  • Zhang, Sanfeng;Lan, Xiang;Li, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3110-3125
    • /
    • 2014
  • Network coding improves TCP's performance in lossy wireless networks. However, the complex congestion window evolution of network coded TCP (TCP-NC) makes the analysis of end-to-end throughput challenging. This paper analyzes the evolutionary process of TCP-NC against lossy links. An analytic model is established by applying a two-dimensional Markov chain. With maximum window size, end-to-end erasure rate and redundancy parameter as input parameters, the analytic model can reflect window evolution and calculate end-to-end throughput of TCP-NC precisely. The key point of our model is that by the novel definition of the states of Markov chain, both the number of related states and the computation complexity are substantially reduced. Our work helps to understand the factors that affect TCP-NC's performance and lay the foundation of its optimization. Extensive simulations on NS2 show that the analytic model features fairly high accuracy.

Bayesian Conjugate Analysis for Transition Probabilities of Non-Homogeneous Markov Chain: A Survey

  • Sung, Minje
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.135-145
    • /
    • 2014
  • The present study surveys Bayesian modeling structure for inferences about transition probabilities of Markov chain. The motivation of the study came from the data that shows transitional behaviors of emotionally disturbed children undergoing residential treatment program. Dirichlet distribution was used as prior for the multinomial distribution. The analysis with real data was implemented in WinBUGS programming environment. The performance of the model was compared to that of alternative approaches.

A Development of Generalized Coupled Markov Chain Model for Stochastic Prediction on Two-Dimensional Space (수정 연쇄 말콥체인을 이용한 2차원 공간의 추계론적 예측기법의 개발)

  • Park Eun-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.52-60
    • /
    • 2005
  • The conceptual model of under-sampled study area will include a great amount of uncertainty. In this study, we investigate the applicability of Markov chain model in a spatial domain as a tool for minimizing the uncertainty arose from the lack of data. A new formulation is developed to generalize the previous two-dimensional coupled Markov chain model, which has more versatility to fit any computational sequence. Furthermore, the computational algorithm is improved to utilize more conditioning information and reduce the artifacts, such as the artificial parcel inclination, caused by sequential computation. A generalized 20 coupled Markov chain (GCMC) is tested through applying a hypothetical soil map to evaluate the appropriateness as a substituting model for conventional geostatistical models. Comparing to sequential indicator model (SIS), the simulation results from GCMC shows lower entropy at the boundaries of indicators which is closer to real soil maps. For under-sampled indicators, however, GCMC under-estimates the presence of the indicators, which is a common aspect of all other geostatistical models. To improve this under-estimation, further study on data fusion (or assimilation) inclusion in the GCMC is required.

Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme (Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Kim, Byung-Sik;Yoon, Seok-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.383-392
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established. Therefore, uncertainty analysis are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an unexpected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.