• Title/Summary/Keyword: Markov Chain Model

Search Result 560, Processing Time 0.031 seconds

An Efficient Markov Chain Based Channel Model for 6G Enabled Massive Internet of Things

  • Yang, Wei;Jing, Xiaojun;Huang, Hai;Zhu, Chunsheng;Jiang, Qiaojie;Xie, Dongliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4203-4223
    • /
    • 2021
  • Accelerated by the Internet of Things (IoT), the need for further technical innovations and developments within wireless communications beyond the fifth generation (B5G) networks is up-and-coming in the past few years. High altitude platform station (HAPS) communication is expected to achieve such high levels that, with high data transfer rates and low latency, millions of devices and applications can work seamlessly. The HAPS has emerged as an indispensable component of next-generations of wireless networks, which will therefore play an important role in promoting massive IoT interconnectivity with 6G. The performance of communication and key technology mainly depend on the characteristic of channel, thus we propose an efficient Markov chain based channel model, then analyze the HAPS communication system's uplink capability and swing effect through experiments. According to the simulation results, the efficacy of the proposed scheme is proven to meet the requirements of ubiquitous connectivity in future IoT enabled by 6G.

Development of Multisite Spatio-Temporal Downscaling for Climate Change and Short-term Prediction (기후변화 및 단기예측을 시공간적 다지점 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Moon, Young-Il;Moon, Jang-Won;Kim, Byung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.120-124
    • /
    • 2009
  • 기후변화로 인한 사회, 경제, 자원, 환경, 수자원 등에 영향분석은 세계적인 연구 트렌드로 자리 잡고 있다. 다양한 모형들이 기후변화 영향을 효과적으로 평가하기 위해서 개발되고 있으나 주로 강우-유출 모형을 통한 유출의 변화 특성을 모의하는데 대부분의 연구가 초점을 맞추고 있다. 그러나 기본적으로 사용되는 강수량자료의 정확한 추정이 기후변화 연구에서 가장 중요하다고 해도 과언이 아니다. 이러한 관점에서 GCM 기후모형으로부터 유도된 기후변화 시나리오로부터 여러 단계로 가공하여 모형의 입력 자료로 사용하기 위한 강수량 자료를 생산하게 된다. 이러한 과정을 총칭해서 Downscaling이라고 한다. 본 연구에서는 기후모형으로 얻은 정보를 유역단위의 수문시나리오로 변환하기 위한 통계학적 Downscaling의 연구이론 변천 상황을 종합적으로 검토하고 각 모형이 갖는 장단점을 분석하고자 한다. 즉, Weather Generator, Single-site Nonstationary Markov Chain, Multi-site Nonstationary Markov Chain, Multi-site Weather State Based Markov Model 등 다양한 모델의 변화 및 진보 과정을 살펴보고 실제 국내 유역에 적용하여 모형의 타당성을 평가해보고자 한다. 이를 위해 IPCC 기후변화 시나리오를 활용하였으며 일강수량자료계열의 특성치, 극치수문량 변동특성 등 기후변화에 따른 영향분석을 일부 실시하여 분석하였다.

  • PDF

An Approximate Analysis of a Stochastic Fluid Flow Model Applied to an ATM Multiplexer (ATM 다중화 장치에 적용된 추계적 유체흐름 모형의 근사분석)

  • 윤영하;홍정식;홍정완;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.97-109
    • /
    • 1998
  • In this paper, we propose a new approach to solve stochastic fluid flow models applied to the analysis of ceil loss of an ATM multiplexer. Existing stochastic fluid flow models have been analyzed by using linear differential equations. In case of large state space, however. analyzing stochastic fluid flow model without numerical errors is not easy. To avoid this numerical errors and to analyze stochastic fluid flow model with large state space. we develope a new computational algorithm. Instead of solving differential equations directly, this approach uses iterative and numerical method without calculating eigenvalues. eigenvectors and boundary coefficients. As a result, approximate solutions and upper and lower bounds are obtained. This approach can be applied to stochastic fluid flow model having general Markov chain structure as well as to the superposition of heterogeneous ON-OFF sources it can be extended to Markov process having non-exponential sojourn times.

  • PDF

A Study on the Simulation of Daily Precipitation Using Multivariate Kernel Density Estimation (다변량 핵밀도 추정법을 이용한 일강수량 모의에 대한 연구)

  • Cha, Young-Il;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.595-604
    • /
    • 2005
  • Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.

STATIONARITY AND β-MIXING PROPERTY OF A MIXTURE AR-ARCH MODELS

  • Lee, Oe-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.813-820
    • /
    • 2006
  • We consider a MAR model with ARCH type conditional heteroscedasticity. MAR-ARCH model can be derived as a smoothed version of the double threshold AR-ARCH model by adding a random error to the threshold parameters. Easy to check sufficient conditions for strict stationarity, ${\beta}-mixing$ property and existence of moments of the model are given via Markovian representation technique.

A Stochastic Model for Order Book Dynamics: An Application to Korean Stock Index Futures

  • Lee, Yongjae;Kim, Woo Chang
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-41
    • /
    • 2013
  • This study presents an application of stochastic model for limit order book (LOB) dynamics to Korean Stock Index Futures (KOSPI 200 Futures). Since KOSPI 200 futures market is widely known as one of the most liquid markets in the world, direct application of an existing model is hardly possible. Therefore, we modified an existing model to successfully model and predict the dynamics of extremely liquid KOSPI 200 futures market.

On the Analysis of DS/CDMA Multi-hop Packet Radio Network with Auxiliary Markov Transient Matrix. (보조 Markov 천이행렬을 이용한 DS/CDMA 다중도약 패킷무선망 분석)

  • 이정재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.805-814
    • /
    • 1994
  • In this paper, we introduce a new method which is available for analyzing the throughput of the packet radio network by using the auxiliary Markov transient matrix with a failure state and a success state. And we consider the effect of symbol error for the network state(X, R) consisted of the number of transmitting PRU X and receiving PRU R. We examine the packet radio network of a continuous time Markov chain model, and the direct sequence binary phase shift keying CDMA radio channel with hard decision Viterbi decoding and bit-by-bit changing spreading code. For the unslotted distributed multi-hop packet radio network, we assume that the packet error due to a symbol error of radio channel has Poisson process, and the time period of an error occurrence is exponentially distributed. Through the throughputs which are found as a function of radio channel parameters, such as the received signal to noise ratio and chips of spreading code per symbol, and of network parameters, such as the number of PRU and offered traffic rate, it is shown that this composite analysis enables us to combine the Markovian packet radio network model with a coded DS/BPSK CDMA radio channel.

  • PDF

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF

Analysis of Daily Precipitation in South Korea Using a Higher Order Markov Chain-dependent Model (고차의 마코브 연쇄-의존 모델을 이용한 남한 강수량 자료의 분석)

  • 박정수;정영근;김래선
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.347-362
    • /
    • 1999
  • 강수 형태 및 강수량을 동시에 고려하는 1차의 마코브 연쇄-의존 모델을 고차의 모델로 확장하였다. 남한의 53개 지역의 강수량 자료에 대해 계절별로 마코브 연쇄의 차수를 결정하였고, 고차의 마코브 연쇄-의존 모델을 적용하여 강수량의 분포특성을 살펴 보았다.

  • PDF

STRICT STATIONARITY AND FUNCTIONAL CENTRAL LIMIT THEOREM FOR ARCH/GRACH MODELS

  • Lee, Oe-Sook;Kim, Ji-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.495-504
    • /
    • 2001
  • In this paper we consider the (generalized) autoregressive model with conditional heteroscedasticity (ARCH/GARCH models). We willing give conditions under which strict stationarity, ergodicity and the functional central limit theorem hold for the corresponding models.

  • PDF