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STATIONARITY AND B-MIXING PROPERTY
OF A MIXTURE AR-ARCH MODELS

OESOOK LEE

ABSTRACT. We consider a MAR model with ARCH type condi-
tional heteroscedasticity. MAR-ARCH model can be derived as
a smoothed version of the double threshold AR-ARCH model by
adding a random error to the threshold parameters. Easy to check
sufficient conditions for strict stationarity, S-mixing property and
existence of moments of the model are given via Markovian repre-
sentation technique.

1. Introduction

During the past two decades there has been a growing interest in
nonlinear time series models. The threshold autoregressive model (TAR)
Tong [9] and the autoregressive conditionally heteroscedastic model
(ARCH) Engle [3] have been among the most widely used models. Re-
cently, Le et al [6] introduced the mixture transition distribution models
to capture the flat stretches, bursts and outliers in time series. This
model is generalized to the mixture autoregressive (MAR) models which
consist of a mixture of several AR components Wong and Li [10].

Adopting MAR model, it is possible to model multimodal condi-
tional distributions and capture conditional heteroscedasticity. Unlike
the TAR mode:s, the MAR model implies conditional heteroscedasticity
even though the innovation is homoscedastic. But many financial time
series exhibit conditional heteroscedasticity which is not of the type in-
herent in the MAR model.

As an extension of MAR model, a mixture autoregressive conditional
heteroscedasticity (MAR-ARCH) model is proposed for modeling non-
linear time series that is the conditional mean follows MAR process,
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whereas the conditional variance of the process follows a mixture ARCH
process. The MAR-ARCH model retains all of the nice properties of the
MAR model and flexible squared autocorrelation structure. It is shown
that the MAR-ARCH model can be successfully applied in finance and
macroeconomics (see, e.g., Zeevi et al [13], Wong and Li [11, 12] Lanne
and Saikkonen [4]).

In this paper, we consider the MAR model with ARCH errors defined

m
L1 » = Z(bio + birye—1 + bizy—2 + - - - + bipYt—p + Tites)
i=1

xI(ci—1 + M < Yogq < ¢ + M),

where 02 = ajo + o ud_;+---+ aiquft_q with us =y — bio — bj1ye—1 —
o+ — bipys—p and I(-) is the indicator function. Here d,1 < d < pis a
delayed parameter; —0o = cg < ¢ < -+ < ¢m—1 < ¢y = 00(M > 2) are
threshold parameters ; b;;, a;(i = 1,2,...,m,j =0,...,p,l =0,...,q)
are unknown parameters with a0 > 0,05 > 0; p > 1,9 > 0. Assume
that {n;} and {¢;} are independent processes such that 7, is normal with
mean 0 and variance o, and ¢, is normal with mean 0 and unit variance.

(1.1) shows that MAR-ARCH model can be considered as a flexible
alternative of the double threshold AR-ARCH model. The second order
stationarity and autocorrelation structure of the MAR-ARCH process
were examined in Wong and Li [11] and Lanne and Saikkonen [4]. Es-
timation, testing hypothesis and examples are discussed in Zeevi et al
(13], Lanne and Saikkonen [4, 5] etc.

Our aim is to give sufficient conditions for strict stationarity and g-
mixing property of the process y; given in (1.1). It is one way to prove the
geometric ergodicity of the properly defined associated Markov process
Y; on RP*4,

(1~2) Y, = (yt,yt—l,-u,yt—p—qﬂ),

by using Markov chain technique and from which we get the desired
results of y;. Existence of moments is also considered.
Section 2 presents the results. All proofs are in section 3.

2. Main results

In this section, we first consider the irreducibility of the Markov chain
Y; defined in (1.1) and (1.2).
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Let ¢ and ® denote the density function and the cumulative distri-
bution function of the standard normal distribution, respectively.

A conditior.al density function f;_1(y) of y; in (1.1), given y_;,7 > 1
is known as (see, Lennan and Saikkonen [4])

m
1
fi-1(ye) = Z g—_tﬂs((yt —bio — birys—1 — - — bipYe—p)/Tit) i —d,
i=1 ¢
where the mixing proportions m;;_4(i = 1,2,...,m) are defined as

1—®((ye—ag—c1)/op),i=1
Tit—d = § D(Wia — cim1)/oy) — ((Yt—a — ¢i)/0n),i =2,...,m — 1
®((Yt—d — Cm—1)/0n),1 = m.

Therefore the (p+ ¢)-step transition probability density function g(-)
of {Y;,t > 0}, that is, it is the joint density of V4,44 conditional on
Yt—-5,3 = 0 is given by

+q-1
I(Yt4pta Yerprg—15- - - Y1) = H§:8 Jeai (Yetj+1)-

LEMMA 2.2. Y, t > 0 in (1.2) is an aperiodic M-irreducible Markov
chain with Lebesgue measure A on RP*? and every compact set is a small
set.

THEOREM 2.1. (Meyn and Tweedie [8]) Suppose that the Markov
process {Y; : t > 0} is aperiodic A-irreducible and B is a small set.
Suppose there are constants p < 1,e > 0 and a measurable function
V > 1 such that

(2.3) EV(Yy)|Yi-1=2] <pV(z)—€, z€B°
and
(2.4) 81612 EV(Yy)|Yi—1 = 2] < oo.

Then the Markov process Y; is geometrically ergodic.

LEMMA 2.2. Let v(z) =3 i 1 vlal", 2= (21,...,2,), n€ Zt,r >
0. If 577 1 & << 1 with & > 0, we may choosey; > 0,%i=1,...,n so that
for some positive constant p < 1,

(2.5) Q&) + ) vzl < pu(z).
i=1 =2
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Define that

bj = max |bg| (0<j<p)

= 0<1<g).
=g en 0<i=9)

Next theorem is our main result.

THEOREM 2.2. (1) Ifbj, oy (1 <j <p, 1 <1< q) and ¢ hold one of
the following;

(a) for0 <r <1, Z] - ]+(1+ZJ 1 5)( . 104;/2)E{etl’" <1,

(b) for 1 <7 <2, (XF_y b5)" + (14 501 0) (T, of ) Eledl” < 1,
then y; in (1.1) is strict]y statlonary and ﬂ -mixing with Er|y|" < oo,
where 7 is the stationary distribution of y;.

(2) IF4(8_ b)) +6(1 + X0_, b:)* (1L, aw)® < 1, then y; in (1.1)
is strictly stationary and B-mixing with E,(yf) < oco.

3. Proofs

Proof of Lemma 2.1. Let g(y|z) denote the joint density of Yiypiq
given Y; = z. For any z € RP*? and A € B(RP™?) with A(4) > 0,

oo

S0 ) 2 540 4) = [ gluldy >0,

t=1 A

since ¢ is continuous and positive. If C' is a compact set, then we have
that

min g(ylz) > ¢
(2,y)€CxC”

for some § > 0. For any z € C and any A € B(R?*9)), we have that
P 4) 2 975, AN C) = [ glyledy 2 M(ANC)
ANnC

and hence every compact subset is small. O
Proof of Lemma 2.2. Let § > 0 be such that > ; &+ 6 = 1. Choose

~v1 > 0 arbitrary and define

(3.6) Y =m(l-&G - —-&——), i=12,...,n—1

Then following two inequalities hold:

(3.7) & +virr <v(l-4d/n), 1<i<n~—1,

(3.8) T1én < (1 —6/n).
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Using (3.3) and (3.4), we obtain that
n—

1
(méi +vip)lz]” + y1énlzal” < (1= 6/n) me
=1

Thus (2.3) holds with p = (1 —§/n). O
Proof of Theorem 2.2. The process y; in (1.1) can be rewritten as

= gl(yt—l, - Yt—p, 77t) + 92(%—1, s Yt—p—q> 77t)€t-

Here
m
G Ye—1s - Yt—pyNt) = Z(bz'o + bitye—1 + - - + bipYt—p) Litds
i=1
m
g%(yt—la o Ytop—go ) = Z(aio + ailuft_l +eet Oéiquzzt—q)fitd,
i=1

and litg = I(ci—1 +m < Yr—a < & + 7).
(1) We first define a test function V : RP*9 — R by

p+q
V(zl, ceey Zp+q) = Z’}ﬂzir +1,

where «; (1 <7 < p+ q) are to be defined later.
We note that if 0 < r < 1, then

(3.9) lag + Z a;zi|" <lao|" + Z la;z]|"

If r > 1, then by convexity of |z|", we obtain that for any fixed ¢ > 0,
there exists M = M (e) > 0 such that if ||z]| > M,

(3.10) lao + > aizil” < 1+ €)Y lail)™ O lasllzil").

Applying the inequalities (3.6) and (3.7) yields that
(3.11)

b+ h byl 0<r <1
91021 2z m)[" <4 (14 ) (28 ) (TE byl
1<r <2,
and
(3.12) [92(21, -, 2ptgy )" < (ao + 3R aqud)/?
+Zl 10;/2 r
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with w; = |z1| + bo + bi|zi41| + - - + bplzigpl, 1=1,2,...,q. Moreover,
(3.13)

|92(21, - -, 2p1qs )"
i 10‘;/2 |zl|w+zg 1 ]|Zl+] "V +Ci, 0<r<1
S o]+ e (1 + 0 by
x(la|” + 3281 b |21+] 4+ C 1<r<2

IN

ptyq
= ) Bilal" + Cs,

1=1

where 711 3; = (14325 o) (L 1al Nfor0<r<1, and S0 6, =

1+e)m(1 +Z 10T, alT/Z) for 1 < r < 2. Let, in this section, C}
be a generic notatlon for positive constants.

Now since ¢; is symmetric, the fact that the inequality (1+z)"+ (1 —
z)" < 2(|z|" +1) holds for 1 < r < 2, -1 < z < 1 implies that for
0<r<2,

Eelg1 + geet]” = 1/2E[|g1 + g2ee|” + |91 — g2e4|"]
(3.14) < a1l" + g2/ Eles]”

Combining (3.8)-(3.11), we have that for 0 < r < 2 and 2z = (z1,...,
pta) with [2] > M.

p+q
BV(Y) | Yiei =2 < w(lgi" +1g1 Elesl”) + > vwilzia|” +1
—
pt+q pt+q '
(3.15) < nQ&lal) + Y wlaial” + 14 Cu,
i=1 =2
where gf(z1, ..., 2p) = bo + >0 bilzi|, 93%(21, -y 2piq) = ap +
S7_, aqu?, and
p+q

(3.16) Z@-

.71.7; ( +E]1])(Zl1a )E|€t|r<1 0<’7’<]_
= A+ ((Choyby) + (1+ X0, b) (D, o P Elen) <

1<r§2.

Define v; (¢ = 1,2,...,p + ¢) by the same manner as given in (3.2).
Then it follows from (3.12), (3.13), assumption (a) or (b) and Lemma 2.2
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that there exists some constant p < 1 such that for [z > M,
BV (Yy)|Yie1 = 2] < pV(2) + Cs.

Thus inequalities (2.1) and (2.2) in Theorem 2.1 hold with some ¢ > 0
and compact set B = {||z|| < M} for sufficiently large M < oo, since
V(2) increases as [|z|| increases. Therefore the geometric ergodicity and
hence the strict stationarity and [-mixing property of y; are obtained.
Existence of the r-th moment of y; is also derived.

(2) To prove part (2), we define V : RPT™? — R by

p+q
(3.17) V(z1,.. ., 2p49) = izt + 1.

Note that from E(e;) = E(€}) = 0 and (3.7), we get that for ||z]| > M,

(3.18) E(g1+g2e)* < (14 3E€))gi* + (Ee; + 3E¢)g5"
with
P P
(3.19) gt (z1,...,2) < (1 +e)? Zb] Zj ij (1-{-6)4277,‘2;1,
j=1 i=1
and
q P
(3.20) @521y, 2prq) < (146 Z Y1+ b))
p
X Z oy (2 + Z bjzfﬂ-)
=1 j=1
ptq
= (1+¢)° Z 8i2f,
i=1

where gi and g3 are given in (3.12), 3P ;m = (1 + €)*(X b:)?, and
S 8= (14 9%y ) (1 + X5, b))

From (3.14)-(3.17), E(¢2) = 1 and E(e}) = 3, we have that if ||Z||
> M,

p+q
EVY)IYer1 = (21, -, 2prg)] < mlAgi* + 665"+ ) vzt +1
2
pt+q = p+q

(3.21)

IA

MY (dm +66:)2 + Y vzt
=1 =2
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where np41 = -+ = Npyq = 0. By assumption, we may choose € > 0 so
small that 4(1 + €)* 3P4 n + 6(1 + €)% 7176, < 1, and hence deduce

1::
the conclusion from (3.18), Lemma 2.1 and Theorem 2.1. O

REMARK 1. Recall that the geometric ergodicity of a Markov chain

implies the S-mixing (absolute regularity) and strongly mixing of the
process.

REMARK 2. Instead of normal distribution assumption of €, other
symmetric mean zero distribution may be used without difficulty.
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