• Title/Summary/Keyword: Market Forecasting

Search Result 465, Processing Time 0.027 seconds

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

Forecasting the Future of the Desktop Monitor Market

  • Young, Ross
    • The Magazine of the IEIE
    • /
    • v.28 no.4
    • /
    • pp.89-96
    • /
    • 2001
  • The LCD monitor market enjoyed rapid growth in 1999 but only experienced modest growth in 2000. It is now poised for rapid growth from 2001 to 2005 as prices and costs decline. Price reductions will enable LCD monitors to move beyond limited vertical markets and extend into the broader consumer markets. This article will examine the future outlook for LCD monitors and provide a growth forecast.

  • PDF

Stock Market Prediction Using Sentiment on YouTube Channels (유튜브 주식채널의 감성을 활용한 코스피 수익률 등락 예측)

  • Su-Ji, Cho;Cheol-Won Yang;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

A Study on the Forecasting Demand of Mobile Communication Services for each Frequency Band Using the Substitution of Next Generations (국내 이동통신서비스의 주파수 대역별 전환수요 예측에 관한 연구)

  • Jeong, Woo-Soo;Cho, Byoung-Sun;Ha, Young-Wook
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • In the mobile communication service market, this study represents an attempt to forecast the subscribers of the IMT-2000 service market using the questionnaire of experts which is the qualitative technique is used. In this study, by using the substitution model of next generations among products in order to analyze the IMT-2000 demand of service, a demand was predicted. And by estimating the market demand prospect in which it becomes the important factor of the IMT-2000 service diffusion according to each bandwidth frequency the politically necessary approaching direction about the frequency was presented. It will be able to become the important part to not only the business carrier but also the policy maker to examine a prospect toward the subscriber of the IMT-2000 service. As a result, the market demand was exposed to be most big when the SKT 800MHz, and the KTF 800(900)MHz were used as the additional frequency. And it was likely to reach to the IMT-2000 number of subscribers to about 35.750 thousand peoples in the future at 2015.

Bidding Strategics in Competitive Electricity Market (경쟁시장에서 입찰전략 수립에 관한 연구)

  • Ko, Young-Jun;Lee, Hyo-Sang;Shin, Dong-Jun;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.550-552
    • /
    • 2001
  • The vertically integrated power industry was divided into six generation companies and one market operator, where electricity trading was launched at power exchange. In this environment, the profits of each generation companies are guaranteed according to utilization of their own generation equipments. Especially, the electricity demand shows seasonal and weekly regular pattern, which the some capacity should be provided into ancillary service based on the past demand forecasting error and operating results of electricity market. Namely, if generation cost function is applied to SMP and BLMP as announced the previous day, the available generation capacity of the following day could be optimally distributed, and therefore contract capacity of ancillary service applied to CBP(Cost Based Pool) and TWBP(Two-Way Bidding Pool) is determined. Consequently, it is Possible to use the retained equipments optimally. This paper represents on efficient bidding strategies for generation equipments through the calculation of the contract and the application of each generator cost function based on the past demand forecasting error and market operating data.

  • PDF

Re-estimation of Model Parameters in Growth Curves When Adjusting Market Potential and Time of Maximum Sales (성장곡선 예측 모형의 특성치 보정에 따른 매개변수의 재추정)

  • Park, Ju-Seok;Ko, Young-Hyun;Jun, Chi-Hyuck;Lee, Jae-Hwan;Hong, Seung-Pyo;Moon, Hyung-Don
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.103-110
    • /
    • 2003
  • Growth curves are widely used in forecasting the market demand. When there are only a few data points available, the estimated model parameters have a low confidence. In this case, if some expert opinions are available, it would be better for predicting future demand to adjust the model parameters using these information. This paper proposes the methodology for re-estimation of model parameters in growth curves when adjusting market potential and/or time of maximum sales. We also provide the detailed procedures for five growth curves including Bass, Logistic, Gompertz, Weibull and Cumulative Lognormal models. Applications to real data are also included.

Demand Forecasting with Discrete Choice Model Based on Technological Forecasting

  • 김원준;이정동;김태유
    • Proceedings of the Technology Innovation Conference
    • /
    • 2003.02a
    • /
    • pp.173-190
    • /
    • 2003
  • Demand forecasting is essential in establishing national and corporate strategy as well as the management of their resource. We forecast demand for multi-generation product using discrete choice model combining diffusion model The discrete choice model generally captures consumers'valuation of the product's qualify in the framework of a cross-sectional analysis. We incorporate diffusion effects into a discrete choice model in order to capture the dynamics of demand for multi-generation products. As an empirical application, we forecast demand for worldwide DRAM (dynamic random access memory) and each of its generations from 1999 to 2005. In so doing, we use the method of 'Technological Forecasting'for DRAM Density and Price of the generations based on the Moore's law and learning by doing, respectively. Since we perform our analysis at the market level, we adopt the inversion routine in using the discrete choice model and find that our model performs well in explaining the current market situation, and also in forecasting new product diffusion in multi-generation product markets.

  • PDF