• Title/Summary/Keyword: Maritime Channel

Search Result 385, Processing Time 0.018 seconds

An acoustic sensor fault detection method based on root-mean-square crossing-rate analysis for passive sonar systems (수동 소나 시스템을 위한 실효치교차율 분석 기반 음향센서 결함 탐지 기법)

  • Kim, Yong Guk;Park, Jeong Won;Kim, Young Shin;Lee, Sang Hyuck;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.30-38
    • /
    • 2017
  • In this paper, we propose an underwater acoustic sensor fault detection method for passive sonar systems. In general, a passive sonar system displays processed results of array signals obtained from tens of the acoustic sensors as a two-dimensional image such as displays for broadband or narrowband analysis. Since detection result display in the operation software is to display the accumulated result through the array signal processing, it is difficult to determine the possibility where signal may be contaminated by the fault or failure of a single channel sensor. In this paper, accordingly, we propose a detection method based on the analysis of RMSCR (Root Mean Square Crossing-Rate), and the processing techniques for the faulty sensors are analyzed. In order to evaluate the performance of the proposed method, the precision of detecting fault sensors is measured by using signals acquired from real array being operated in several coastal areas. Besides, we compare performance of fault processing techniques. From the experiments, it is shown that the proposed method works well in underwater environments with high average RMS, and mute (set to zero) shows the best performance with regard to fault processing techniques.

Discovery of the Dmitri Donskoi ship near Ulleung Island(East Sea of Korea), using geophysical surveys (물리탐사기술을 이용한 침몰선 Dmitri Donskoi호 탐사)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.104-111
    • /
    • 2005
  • Dmitri Donskoi, the Russian cruiser launched in 1883, is known to have sunk near Ulleung Island (East Sea, Korea) on May 29, 1905, while it was participating in the Russo-Japanese War. In order to find this ship, information about its possible location was obtained from Russian and Japanese maritime historical records. The supposed location of the ship was identified, and we conducted a five-year geophysical survey from 1999 to 2003. A reconnaissance three-dimensional topographic survey of the sea floor was carried out using multi-beam echo sounder, marine magnetometer, and side-scan sonar. An anomalous body identified through the initial reconnaissance survey was identified by a detailed survey using a remotely operated vehicle, deep-sea camera, and the mini-submarine Pathfinder. Interpretation of the acquired data showed that the ship is hanging on the side of a channel, at the bottom of the sea 400 m below sea level. The location is about 2 km from Port Jeodong, Uleung Island. We discovered 152 mm naval guns and other war materiel still attached to the hull of the ship. In addition, the remnants of the steering gear and other machinery that were burnt during the final action were found near the hull. Strong magnetic fields, resulting from the presence of volcanic rocks in the survey area, affected the resolution of the magnetic data gathered; as a result, we could not locate the ship reliably using the magnetic method. Severe sea floor topography in the gully around the hull gave rise to diffuse reflections in the side-scan sonar data, and this prevented us from identifying the anomalous body with the side-scan sonar technique. However, the sea-floor image obtained from the multi-bean echo sounder was very useful in verifying the location of the ship.

Exploiting GOCI-II UV Channel to Observe Absorbing Aerosols (GOCI-II 자외선 채널을 활용한 흡수성 에어로졸 관측)

  • Lee, Seoyoung;Kim, Jhoon;Ahn, Jae-Hyun;Lim, Hyunkwang;Cho, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1697-1707
    • /
    • 2021
  • On 19 February 2020, the 2nd Geostationary Ocean Color Imager (GOCI-II), a maritime sensor of GEO-KOMPSAT-2B, was launched. The GOCI-II instrument expands the scope of aerosol retrieval research with its improved performance compared to the former instrument (GOCI). In particular, the newly included UV band at 380 nm plays a significant role in improving the sensitivity of GOCI-II observations to the absorbing aerosols. In this study, we calculated the aerosol index and detected absorbing aerosols from January to June 2021 using GOCI-II 380 and 412 nm channels. Compared to the TROPOMI aerosol index, the GOCI-II aerosol index showed a positive bias, but the dust pixels still could be clearly distinguished from the cloud and clear pixels. The high GOCI-II aerosol index coincided with ground-based observations indicating dust aerosols were detected. We found that 70.5% of dust and 80% of moderately-absorbing fine aerosols detected from the ground had GOCI-II aerosol indices larger than the 75th percentile through the whole study period.

The Development of Tidal Power System Can be Installed in Existing Dykes - The Open Channel Experimental Verification (기존 방조제에 설치 가능한 조력발전 장치 개발 - 개수로 현장실험 검증)

  • HyukJin Choi;Dong-Hui Ko;Nam-Sun Oh;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • As problems such as difficulties in securing stable energy resources and global warming due to the emission of greenhouse gases due to the use of fossil fuels have emerged, interest in the development of renewable energy is increasing. Since the tidal phenomenon has a regularity that occurs regularly with a certain period, it is possible to predict accurately in advance, which has a advantage in terms of energy recovery. Therefore, various methods have been devised to utilize the tide as an energy source. Tidal power using barrages is a representative method that is widely operated, but the promotion of tidal power generation projects is being delayed or stopped due to the decrease in the level of water in the tidal basin, changes in water quality and in the ecosystem. In this study, a field experiment was conducted to develop and verify the performance of a tidal power device applicable to sea areas where dykes are already installed. As a result of carrying out four cases of experiments using two water tanks, pipe lines, open channels, weirs, and water turbine and generator, the possibility of developing a power generation system capable of 10 kW output or more and 60% efficiency or more was confirmed. These research results can be used for small-scale tidal power by utilizing the existing dykes.

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea (남해 가막만의 현생퇴적층 발달특성)

  • Kim, So Ra;Lee, Gwang Soo;Choi, Dong Lim;Kim, Dae Choul;Lee, Tae Hee;Seo, Young Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.