• 제목/요약/키워드: Marine-derived bacteria

검색결과 42건 처리시간 0.035초

Bioactive Compounds Derived from Marine Bacteria: Anti-cancer Activity

  • Kim, Se-Kwon;Hoang, Van L.T.;Kim, Moon-Moo
    • 한국해양바이오학회지
    • /
    • 제1권4호
    • /
    • pp.232-242
    • /
    • 2006
  • Bioactive compounds produced by microorganisms have focused on in recent years. In particular, novel compounds showing anti-cancer activity have been isolated from marine microorganisms. In this review, we will discuss on the studies of new bioactive compounds derived from marine bacteria with conjunction to anti-cancer activity. This review will provide an information and source for bioactive compounds showing anti-cancer activity, which were derived from marine bacteria.

  • PDF

Sustainable Use of Marine Microorganisms

  • Lee Yoo Kyung;Lee Jung Hyun;Kwon Kae Kyoung;Lee Hong Kum
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.94-99
    • /
    • 2002
  • The oceans cover about $71\%$ of the Earth's crust and contain nearly 300,000 described species. Free-living bacteria in the sea and symbiotic bacteria of marine invertebrates are proving to be valuable sources of useful bioactive compounds. Marine sponges, in particular, which contain diverse communities of bacteria, produce many classes of compounds that are unique to the marine environment. Uncultured microorganisms are commonly believed to represent $99.9\%$ of the whole microbial community. They have been investigated for the possibility of isolating and over-expressing genes in viable microorganisms. Strict symbiotic species that have been adapted to the host are candidate unculturable species. With the enormous potential for discovery, development, and market value of marine derived compounds, supply of the products is a major limiting factor for further development.

  • PDF

Antimicrobial Constituents from the Bacillus megaterium LC Isolated from Marine Sponge Haliclona oculata

  • Pham, Viet Cuong;Nguyen, Thi Kim Cuc;Vu, Thi Quyen;Pham, Thanh Binh;Phan, Van Kiem;Nguyen, Hoai Nam;Nguyen, Tien Dat
    • Natural Product Sciences
    • /
    • 제20권3호
    • /
    • pp.202-205
    • /
    • 2014
  • Three compounds including 7,7-bis(3-indolyl)-p-cresol (1), cyclo-(S-Pro-R-Leu) (2) and cyclo-(S-Pro-R-Val) (3) were isolated from the strain of Bacillus megaterium LC derived from the marine sponge Haliclona oculata. All the isolated compounds showed antimicrobial activity at MIC values ranging from 0.005 to $5{\mu}g/mL$ against Gram-negative bacteria Vibrio vulnificus and V. parahaemolyticus, gram-positive bacteria Bacillus cereus and Micrococcus luteus, and the dermatophyte Trichophyton mentagrophytes. The results suggested that these compounds might have potential to be developed as agents treating dermatosis and controlling vibriosis in aquaculture.

Four Butenolides are Novel Cytotoxic Compounds Isolated from the Marine-Derived Bacterium, Streptoverticillium luteoverticillatum 11014

  • Li, De-Hai;Zhu, Tian-Jiao;Liu, Hong-Bing;Fang, Yu-Chun;Gu, Qian-Qun;Zhu, Wei-Ming
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.624-626
    • /
    • 2006
  • Four known butenolides were isolated from the ethyl acetate extracts of the culture broth of the marine-derived bacterium, Streptoverticillium luteoverticillatum, by bioassay-guided fractionation. The structures were identified on the basis of spectral data. The absolute configuration of compound (1) was determined by CD spectrum for the first time. Compounds 1-4 showed in vitro cytotoxicity against the murine lymphoma P388 and human leukemia K562 cell lines. This is the first report on the isolation of butenolides from the marine bacterium, Streptoverticillium luteoverticillatum, and their cytotoxic activities.

해양균류의 항균활성 검색 (Screening of Antimicrobial Activity from the Marine-Derived Fungus)

  • ;;최홍대;손병화
    • 생약학회지
    • /
    • 제34권2호통권133호
    • /
    • pp.142-144
    • /
    • 2003
  • Acetone extracts of 301 strains of marine-derived fungus were tested for antimicrobial activity against three strains of bacteria. The bacteria consisted of three pathogens, Staphylococcus aureus, methicillin-resistant S. Aureus, and multidrug-resistant S. aureus. The acetone extracts of 10 strains (MFA117, MFA130, MFA134, MFA206, MFA217, MFA268, MFA277, MFA291, MFA292, MFA301) showed strong activity, inhibiting 100% of the bacterial growth. These antimicrobial active strains were cultlued in SWS medium on a 1 L scale and the resulting broth and mycelium were extracted to afford mycelium extract (000M) and broth extract (000B), respectively. Antimicrobial activity for all extracts has been tested as the results, the mycelium extract of one strain (217M) and the broth extracts of 9 strains (117B,130B, 134B, 206B, 268B, 277B, 291B, 292B, 301B) exhibited relatively high levels of activity at minimal inhibitory concentration (MIC) values of $500-125\;{\mu}g/mL$ range. Among them, the extracts, 277B, 291B, 292B and 301B showed the most significant antimicrobial activity with $IC_{50}$ values of $125\;{\mu}g/mL$.

Characterization of L-asparaginase-producing Trichoderma spp. Isolated from Marine Environments

  • Woon-Jong, Yu;Dawoon, Chung;Yong Min, Kwon;Seung Sub, Bae;Eun-Seo, Cho;Hye Suck, An;Grace, Choi
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.121-128
    • /
    • 2022
  • L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.

생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구 (Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea)

  • 이동헌;이준호;정갑식;우한준;강정원;신경훈;하선용
    • Ocean and Polar Research
    • /
    • 제36권1호
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates

  • Jeong, Eun-Tak;Park, Seul-Ki;Jo, Du-Min;Khan, Fazlurrahman;Choi, Tae Ho;Yoon, Tae-Mi;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1288-1294
    • /
    • 2021
  • There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.

Experimental Transfer of Tetracycline Resistance Genes from Fish-derived Bacteria to Escherichia coli

  • Kim Seok-Ryel;Kim Hyeung-Rak;Suzuki Satoru
    • Fisheries and Aquatic Sciences
    • /
    • 제9권2호
    • /
    • pp.97-100
    • /
    • 2006
  • To determine whether the tetracycline resistance genes tet (34), tet (M), and tet (S) can be transferred among bacteria, we used a filter mating experiment allowing intimate cell-cell contact between donor and recipient. The tet(34) gene, conveyed on a chromosome of Vibrio species (No. 6 and SW-42) was not transferred to Escherichia coli JM109, suggesting that it is not transferred among bacterial species. The tet (M) gene was transferred from three Vibrio strains (4-E, SW-18, and SW-38) to E. coli at frequencies of $8.5{\times}10^{-5}\;to\;2.1{\times}10^{-6}$. The tet(S) gene was transferred from Lactococcus garvieae KHS98032 to E. coli at a frequency of $1.8{\times}10^{-6}$. Transconjugated recipients showed increased minimum inhibitory concentrations against oxytetracycline. Although the donors possess the Tn916-Tn1545 transposons, they were not detected in transformed recipients, suggesting that the transfer of tet(M) and tet(S) is mediated by elements or mechanisms. Two ribosomal protect protein genes were also transmissible from marine bacteria to E. coli, suggesting gene hopping among marine, terrestrial, and human environments.

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.